This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | ||
| lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | islno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 4 | lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | |
| 5 | lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 7 | lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 8 | 1 2 3 4 5 6 7 | lnoval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) ) |
| 10 | fveq1 | ⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) ) | |
| 11 | fveq1 | ⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑤 = 𝑇 → ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) = ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) ) |
| 13 | fveq1 | ⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑧 ) ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝑤 = 𝑇 → ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) |
| 15 | 10 14 | eqeq12d | ⊢ ( 𝑤 = 𝑇 → ( ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 16 | 15 | 2ralbidv | ⊢ ( 𝑤 = 𝑇 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 17 | 16 | ralbidv | ⊢ ( 𝑤 = 𝑇 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 18 | 17 | elrab | ⊢ ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ↔ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 19 | 2 | fvexi | ⊢ 𝑌 ∈ V |
| 20 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 21 | 19 20 | elmap | ⊢ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 22 | 21 | anbi1i | ⊢ ( ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 23 | 18 22 | bitri | ⊢ ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 24 | 9 23 | bitrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) ) |