This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function F generated by varying the first argument of an inner product (with its second argument a fixed vector A ) is a bounded linear functional, i.e. a bounded linear operator from the vector space to CC . (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipblnfi.1 | |- X = ( BaseSet ` U ) |
|
| ipblnfi.7 | |- P = ( .iOLD ` U ) |
||
| ipblnfi.9 | |- U e. CPreHilOLD |
||
| ipblnfi.c | |- C = <. <. + , x. >. , abs >. |
||
| ipblnfi.l | |- B = ( U BLnOp C ) |
||
| ipblnfi.f | |- F = ( x e. X |-> ( x P A ) ) |
||
| Assertion | ipblnfi | |- ( A e. X -> F e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipblnfi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipblnfi.7 | |- P = ( .iOLD ` U ) |
|
| 3 | ipblnfi.9 | |- U e. CPreHilOLD |
|
| 4 | ipblnfi.c | |- C = <. <. + , x. >. , abs >. |
|
| 5 | ipblnfi.l | |- B = ( U BLnOp C ) |
|
| 6 | ipblnfi.f | |- F = ( x e. X |-> ( x P A ) ) |
|
| 7 | 3 | phnvi | |- U e. NrmCVec |
| 8 | 1 2 | dipcl | |- ( ( U e. NrmCVec /\ x e. X /\ A e. X ) -> ( x P A ) e. CC ) |
| 9 | 7 8 | mp3an1 | |- ( ( x e. X /\ A e. X ) -> ( x P A ) e. CC ) |
| 10 | 9 | ancoms | |- ( ( A e. X /\ x e. X ) -> ( x P A ) e. CC ) |
| 11 | 10 6 | fmptd | |- ( A e. X -> F : X --> CC ) |
| 12 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 13 | 1 12 | nvscl | |- ( ( U e. NrmCVec /\ y e. CC /\ z e. X ) -> ( y ( .sOLD ` U ) z ) e. X ) |
| 14 | 7 13 | mp3an1 | |- ( ( y e. CC /\ z e. X ) -> ( y ( .sOLD ` U ) z ) e. X ) |
| 15 | 14 | ad2ant2lr | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( y ( .sOLD ` U ) z ) e. X ) |
| 16 | simprr | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> w e. X ) |
|
| 17 | simpll | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> A e. X ) |
|
| 18 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 19 | 1 18 2 | dipdir | |- ( ( U e. CPreHilOLD /\ ( ( y ( .sOLD ` U ) z ) e. X /\ w e. X /\ A e. X ) ) -> ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) = ( ( ( y ( .sOLD ` U ) z ) P A ) + ( w P A ) ) ) |
| 20 | 3 19 | mpan | |- ( ( ( y ( .sOLD ` U ) z ) e. X /\ w e. X /\ A e. X ) -> ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) = ( ( ( y ( .sOLD ` U ) z ) P A ) + ( w P A ) ) ) |
| 21 | 15 16 17 20 | syl3anc | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) = ( ( ( y ( .sOLD ` U ) z ) P A ) + ( w P A ) ) ) |
| 22 | simplr | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> y e. CC ) |
|
| 23 | simprl | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> z e. X ) |
|
| 24 | 1 18 12 2 3 | ipassi | |- ( ( y e. CC /\ z e. X /\ A e. X ) -> ( ( y ( .sOLD ` U ) z ) P A ) = ( y x. ( z P A ) ) ) |
| 25 | 22 23 17 24 | syl3anc | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( y ( .sOLD ` U ) z ) P A ) = ( y x. ( z P A ) ) ) |
| 26 | 25 | oveq1d | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( ( y ( .sOLD ` U ) z ) P A ) + ( w P A ) ) = ( ( y x. ( z P A ) ) + ( w P A ) ) ) |
| 27 | 21 26 | eqtrd | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) = ( ( y x. ( z P A ) ) + ( w P A ) ) ) |
| 28 | 14 | adantll | |- ( ( ( A e. X /\ y e. CC ) /\ z e. X ) -> ( y ( .sOLD ` U ) z ) e. X ) |
| 29 | 1 18 | nvgcl | |- ( ( U e. NrmCVec /\ ( y ( .sOLD ` U ) z ) e. X /\ w e. X ) -> ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) e. X ) |
| 30 | 7 29 | mp3an1 | |- ( ( ( y ( .sOLD ` U ) z ) e. X /\ w e. X ) -> ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) e. X ) |
| 31 | 28 30 | sylan | |- ( ( ( ( A e. X /\ y e. CC ) /\ z e. X ) /\ w e. X ) -> ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) e. X ) |
| 32 | 31 | anasss | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) e. X ) |
| 33 | oveq1 | |- ( x = ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) -> ( x P A ) = ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) ) |
|
| 34 | ovex | |- ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) e. _V |
|
| 35 | 33 6 34 | fvmpt | |- ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) e. X -> ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) ) |
| 36 | 32 35 | syl | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) P A ) ) |
| 37 | oveq1 | |- ( x = z -> ( x P A ) = ( z P A ) ) |
|
| 38 | ovex | |- ( z P A ) e. _V |
|
| 39 | 37 6 38 | fvmpt | |- ( z e. X -> ( F ` z ) = ( z P A ) ) |
| 40 | 39 | ad2antrl | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( F ` z ) = ( z P A ) ) |
| 41 | 40 | oveq2d | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( y x. ( F ` z ) ) = ( y x. ( z P A ) ) ) |
| 42 | oveq1 | |- ( x = w -> ( x P A ) = ( w P A ) ) |
|
| 43 | ovex | |- ( w P A ) e. _V |
|
| 44 | 42 6 43 | fvmpt | |- ( w e. X -> ( F ` w ) = ( w P A ) ) |
| 45 | 44 | ad2antll | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( F ` w ) = ( w P A ) ) |
| 46 | 41 45 | oveq12d | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( ( y x. ( F ` z ) ) + ( F ` w ) ) = ( ( y x. ( z P A ) ) + ( w P A ) ) ) |
| 47 | 27 36 46 | 3eqtr4d | |- ( ( ( A e. X /\ y e. CC ) /\ ( z e. X /\ w e. X ) ) -> ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( y x. ( F ` z ) ) + ( F ` w ) ) ) |
| 48 | 47 | ralrimivva | |- ( ( A e. X /\ y e. CC ) -> A. z e. X A. w e. X ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( y x. ( F ` z ) ) + ( F ` w ) ) ) |
| 49 | 48 | ralrimiva | |- ( A e. X -> A. y e. CC A. z e. X A. w e. X ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( y x. ( F ` z ) ) + ( F ` w ) ) ) |
| 50 | 4 | cnnv | |- C e. NrmCVec |
| 51 | 4 | cnnvba | |- CC = ( BaseSet ` C ) |
| 52 | 4 | cnnvg | |- + = ( +v ` C ) |
| 53 | 4 | cnnvs | |- x. = ( .sOLD ` C ) |
| 54 | eqid | |- ( U LnOp C ) = ( U LnOp C ) |
|
| 55 | 1 51 18 52 12 53 54 | islno | |- ( ( U e. NrmCVec /\ C e. NrmCVec ) -> ( F e. ( U LnOp C ) <-> ( F : X --> CC /\ A. y e. CC A. z e. X A. w e. X ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( y x. ( F ` z ) ) + ( F ` w ) ) ) ) ) |
| 56 | 7 50 55 | mp2an | |- ( F e. ( U LnOp C ) <-> ( F : X --> CC /\ A. y e. CC A. z e. X A. w e. X ( F ` ( ( y ( .sOLD ` U ) z ) ( +v ` U ) w ) ) = ( ( y x. ( F ` z ) ) + ( F ` w ) ) ) ) |
| 57 | 11 49 56 | sylanbrc | |- ( A e. X -> F e. ( U LnOp C ) ) |
| 58 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 59 | 1 58 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` A ) e. RR ) |
| 60 | 7 59 | mpan | |- ( A e. X -> ( ( normCV ` U ) ` A ) e. RR ) |
| 61 | 1 58 2 3 | sii | |- ( ( z e. X /\ A e. X ) -> ( abs ` ( z P A ) ) <_ ( ( ( normCV ` U ) ` z ) x. ( ( normCV ` U ) ` A ) ) ) |
| 62 | 61 | ancoms | |- ( ( A e. X /\ z e. X ) -> ( abs ` ( z P A ) ) <_ ( ( ( normCV ` U ) ` z ) x. ( ( normCV ` U ) ` A ) ) ) |
| 63 | 39 | adantl | |- ( ( A e. X /\ z e. X ) -> ( F ` z ) = ( z P A ) ) |
| 64 | 63 | fveq2d | |- ( ( A e. X /\ z e. X ) -> ( abs ` ( F ` z ) ) = ( abs ` ( z P A ) ) ) |
| 65 | 60 | recnd | |- ( A e. X -> ( ( normCV ` U ) ` A ) e. CC ) |
| 66 | 1 58 | nvcl | |- ( ( U e. NrmCVec /\ z e. X ) -> ( ( normCV ` U ) ` z ) e. RR ) |
| 67 | 7 66 | mpan | |- ( z e. X -> ( ( normCV ` U ) ` z ) e. RR ) |
| 68 | 67 | recnd | |- ( z e. X -> ( ( normCV ` U ) ` z ) e. CC ) |
| 69 | mulcom | |- ( ( ( ( normCV ` U ) ` A ) e. CC /\ ( ( normCV ` U ) ` z ) e. CC ) -> ( ( ( normCV ` U ) ` A ) x. ( ( normCV ` U ) ` z ) ) = ( ( ( normCV ` U ) ` z ) x. ( ( normCV ` U ) ` A ) ) ) |
|
| 70 | 65 68 69 | syl2an | |- ( ( A e. X /\ z e. X ) -> ( ( ( normCV ` U ) ` A ) x. ( ( normCV ` U ) ` z ) ) = ( ( ( normCV ` U ) ` z ) x. ( ( normCV ` U ) ` A ) ) ) |
| 71 | 62 64 70 | 3brtr4d | |- ( ( A e. X /\ z e. X ) -> ( abs ` ( F ` z ) ) <_ ( ( ( normCV ` U ) ` A ) x. ( ( normCV ` U ) ` z ) ) ) |
| 72 | 71 | ralrimiva | |- ( A e. X -> A. z e. X ( abs ` ( F ` z ) ) <_ ( ( ( normCV ` U ) ` A ) x. ( ( normCV ` U ) ` z ) ) ) |
| 73 | 4 | cnnvnm | |- abs = ( normCV ` C ) |
| 74 | 1 58 73 54 5 7 50 | blo3i | |- ( ( F e. ( U LnOp C ) /\ ( ( normCV ` U ) ` A ) e. RR /\ A. z e. X ( abs ` ( F ` z ) ) <_ ( ( ( normCV ` U ) ` A ) x. ( ( normCV ` U ) ` z ) ) ) -> F e. B ) |
| 75 | 57 60 72 74 | syl3anc | |- ( A e. X -> F e. B ) |