This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnvs.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cnnvs | ⊢ · = ( ·𝑠OLD ‘ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnvs.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | 2 | smfval | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( 2nd ‘ ( 1st ‘ 𝑈 ) ) |
| 4 | 1 | fveq2i | ⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 〈 〈 + , · 〉 , abs 〉 ) |
| 5 | opex | ⊢ 〈 + , · 〉 ∈ V | |
| 6 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 7 | cnex | ⊢ ℂ ∈ V | |
| 8 | fex | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ) → abs ∈ V ) | |
| 9 | 6 7 8 | mp2an | ⊢ abs ∈ V |
| 10 | 5 9 | op1st | ⊢ ( 1st ‘ 〈 〈 + , · 〉 , abs 〉 ) = 〈 + , · 〉 |
| 11 | 4 10 | eqtri | ⊢ ( 1st ‘ 𝑈 ) = 〈 + , · 〉 |
| 12 | 11 | fveq2i | ⊢ ( 2nd ‘ ( 1st ‘ 𝑈 ) ) = ( 2nd ‘ 〈 + , · 〉 ) |
| 13 | addex | ⊢ + ∈ V | |
| 14 | mulex | ⊢ · ∈ V | |
| 15 | 13 14 | op2nd | ⊢ ( 2nd ‘ 〈 + , · 〉 ) = · |
| 16 | 3 12 15 | 3eqtrri | ⊢ · = ( ·𝑠OLD ‘ 𝑈 ) |