This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | |
| 7 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 8 | 1 2 3 4 5 6 | ipasslem1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 9 | nnnn0 | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) | |
| 10 | 1 2 3 4 5 6 | ipasslem2 | ⊢ ( ( - 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 11 | 9 10 | sylan | ⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 12 | 11 | adantll | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 13 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 14 | 13 | negnegd | ⊢ ( 𝑁 ∈ ℝ → - - 𝑁 = 𝑁 ) |
| 15 | 14 | oveq1d | ⊢ ( 𝑁 ∈ ℝ → ( - - 𝑁 𝑆 𝐴 ) = ( 𝑁 𝑆 𝐴 ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑁 ∈ ℝ → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( - - 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 18 | 14 | oveq1d | ⊢ ( 𝑁 ∈ ℝ → ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( - - 𝑁 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 20 | 12 17 19 | 3eqtr3d | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 21 | 8 20 | jaoian | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 22 | 7 21 | sylanb | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |