This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem1.b | ⊢ 𝐵 ∈ 𝑋 | |
| 7 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1 2 3 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 11 | 9 10 | mpan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 12 | 8 11 | mp3an2 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 13 | 7 12 | sylan | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 14 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 15 | 9 14 | mpan | ⊢ ( 𝐴 ∈ 𝑋 → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 17 | 16 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 18 | 13 17 | eqtrd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) 𝑆 𝐴 ) = ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) ) |
| 20 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 21 | 9 6 20 | mp3an13 | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 22 | 21 | mullidd | ⊢ ( 𝐴 ∈ 𝑋 → ( 1 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 1 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 25 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 26 | 9 25 | mp3an1 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 27 | 7 26 | sylan | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ) |
| 28 | 1 2 3 4 5 | ipdiri | ⊢ ( ( ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 29 | 6 28 | mp3an3 | ⊢ ( ( ( 𝑘 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 30 | 27 29 | sylancom | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 𝐴 𝑃 𝐵 ) ) ) |
| 31 | 24 30 | eqtr4d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝐺 𝐴 ) 𝑃 𝐵 ) ) |
| 32 | 19 31 | eqtr4d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 33 | oveq1 | ⊢ ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 34 | 32 33 | sylan9eq | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 35 | adddir | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 36 | 8 35 | mp3an2 | ⊢ ( ( 𝑘 ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 37 | 7 21 36 | syl2an | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) + ( 1 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 39 | 34 38 | eqtr4d | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 40 | 39 | exp31 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 41 | 40 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) → ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 42 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 43 | 1 42 4 | dip0l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 ) |
| 44 | 9 6 43 | mp2an | ⊢ ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) = 0 |
| 45 | 1 3 42 | nv0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
| 46 | 9 45 | mpan | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 𝑆 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
| 47 | 46 | oveq1d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 0vec ‘ 𝑈 ) 𝑃 𝐵 ) ) |
| 48 | 21 | mul02d | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · ( 𝐴 𝑃 𝐵 ) ) = 0 ) |
| 49 | 44 47 48 | 3eqtr4a | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 50 | oveq1 | ⊢ ( 𝑗 = 0 → ( 𝑗 𝑆 𝐴 ) = ( 0 𝑆 𝐴 ) ) | |
| 51 | 50 | oveq1d | ⊢ ( 𝑗 = 0 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 52 | oveq1 | ⊢ ( 𝑗 = 0 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 53 | 51 52 | eqeq12d | ⊢ ( 𝑗 = 0 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 54 | 53 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 0 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 0 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 55 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 𝑆 𝐴 ) = ( 𝑘 𝑆 𝐴 ) ) | |
| 56 | 55 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 57 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 58 | 56 57 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 59 | 58 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 𝑘 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑘 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 60 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 𝑆 𝐴 ) = ( ( 𝑘 + 1 ) 𝑆 𝐴 ) ) | |
| 61 | 60 | oveq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 62 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 63 | 61 62 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 64 | 63 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( ( 𝑘 + 1 ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑘 + 1 ) · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 65 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 𝑆 𝐴 ) = ( 𝑁 𝑆 𝐴 ) ) | |
| 66 | 65 | oveq1d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 67 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 68 | 66 67 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 69 | 68 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ∈ 𝑋 → ( ( 𝑗 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑗 · ( 𝐴 𝑃 𝐵 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) ) |
| 70 | 41 49 54 59 64 69 | nn0indALT | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝑋 → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 71 | 70 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑁 · ( 𝐴 𝑃 𝐵 ) ) ) |