This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dip0l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝑃 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dip0r.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | dip0r.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | dip0r.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | 1 2 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 6 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝑍 ) ) = ( 𝑍 𝑃 𝐴 ) ) |
| 7 | 5 6 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝑍 ) ) = ( 𝑍 𝑃 𝐴 ) ) |
| 8 | 1 2 3 | dip0r | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝑍 ) = 0 ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝑍 ) ) = ( ∗ ‘ 0 ) ) |
| 10 | cj0 | ⊢ ( ∗ ‘ 0 ) = 0 | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐴 𝑃 𝑍 ) ) = 0 ) |
| 12 | 7 11 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑍 𝑃 𝐴 ) = 0 ) |