This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open interval ending at B is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iocopnst.1 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) | |
| Assertion | iocopnst | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐶 (,] 𝐵 ) ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocopnst.1 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 2 | iooretop | ⊢ ( 𝐶 (,) ( 𝐵 + 1 ) ) ∈ ( topGen ‘ ran (,) ) | |
| 3 | simp1 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 ∈ ℝ ) | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 ∈ ℝ ) ) |
| 5 | simp2 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐶 < 𝑣 ) | |
| 6 | 5 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐶 < 𝑣 ) ) |
| 7 | ltp1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( 𝐵 + 1 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → 𝐵 < ( 𝐵 + 1 ) ) |
| 9 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 10 | lelttr | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝑣 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝑣 < ( 𝐵 + 1 ) ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝑣 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 12 | 11 | ancom1s | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝑣 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 13 | 12 | ancomsd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝐵 < ( 𝐵 + 1 ) ∧ 𝑣 ≤ 𝐵 ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 14 | 9 13 | mpidan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( 𝐵 < ( 𝐵 + 1 ) ∧ 𝑣 ≤ 𝐵 ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 15 | 8 14 | mpand | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑣 ≤ 𝐵 → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 16 | 15 | impr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 < ( 𝐵 + 1 ) ) |
| 17 | 16 | 3adantr2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 < ( 𝐵 + 1 ) ) |
| 18 | 17 | ex | ⊢ ( 𝐵 ∈ ℝ → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 < ( 𝐵 + 1 ) ) ) |
| 20 | 4 6 19 | 3jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ) ) |
| 21 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 22 | elico2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) |
| 25 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑣 ) → 𝐴 < 𝑣 ) ) | |
| 26 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 < 𝑣 → 𝐴 ≤ 𝑣 ) ) | |
| 27 | 26 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 < 𝑣 → 𝐴 ≤ 𝑣 ) ) |
| 28 | 25 27 | syld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑣 ) → 𝐴 ≤ 𝑣 ) ) |
| 29 | 28 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑣 ) → 𝐴 ≤ 𝑣 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝑣 ) ) → 𝐴 ≤ 𝑣 ) |
| 31 | 30 | an4s | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ) ) → 𝐴 ≤ 𝑣 ) |
| 32 | 31 | 3adantr3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑣 ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ≤ 𝐶 ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐴 ≤ 𝑣 ) ) |
| 34 | 33 | anasss | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐴 ≤ 𝑣 ) ) |
| 35 | 34 | 3adantr3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐴 ≤ 𝑣 ) ) |
| 36 | 35 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐴 ≤ 𝑣 ) ) |
| 37 | 24 36 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝐴 ≤ 𝑣 ) ) |
| 38 | simp3 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) | |
| 39 | 38 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 40 | 4 37 39 | 3jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 41 | 20 40 | jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 42 | simpl1 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 ∈ ℝ ) | |
| 43 | simpl2 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝐶 < 𝑣 ) | |
| 44 | simpr3 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 ≤ 𝐵 ) | |
| 45 | 42 43 44 | 3jca | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) |
| 46 | 41 45 | impbid1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ↔ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 47 | 24 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 48 | 47 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 49 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 50 | elioc2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑣 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) | |
| 51 | 48 49 50 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑣 ∈ ( 𝐶 (,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 52 | elin | ⊢ ( 𝑣 ∈ ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑣 ∈ ( 𝐶 (,) ( 𝐵 + 1 ) ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 53 | 9 | rexrd | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ* ) |
| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐵 + 1 ) ∈ ℝ* ) |
| 55 | elioo2 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ ( 𝐵 + 1 ) ∈ ℝ* ) → ( 𝑣 ∈ ( 𝐶 (,) ( 𝐵 + 1 ) ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ) ) | |
| 56 | 48 54 55 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑣 ∈ ( 𝐶 (,) ( 𝐵 + 1 ) ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ) ) |
| 57 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) | |
| 58 | 57 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 59 | 56 58 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( ( 𝑣 ∈ ( 𝐶 (,) ( 𝐵 + 1 ) ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 60 | 52 59 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑣 ∈ ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ 𝐶 < 𝑣 ∧ 𝑣 < ( 𝐵 + 1 ) ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 61 | 46 51 60 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑣 ∈ ( 𝐶 (,] 𝐵 ) ↔ 𝑣 ∈ ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 62 | 61 | eqrdv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 (,] 𝐵 ) = ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 63 | ineq1 | ⊢ ( 𝑣 = ( 𝐶 (,) ( 𝐵 + 1 ) ) → ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 64 | 63 | rspceeqv | ⊢ ( ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐶 (,] 𝐵 ) = ( ( 𝐶 (,) ( 𝐵 + 1 ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐶 (,] 𝐵 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 65 | 2 62 64 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐶 (,] 𝐵 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 66 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 67 | ovex | ⊢ ( 𝐴 [,] 𝐵 ) ∈ V | |
| 68 | elrest | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐶 (,] 𝐵 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 69 | 66 67 68 | mp2an | ⊢ ( ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐶 (,] 𝐵 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 70 | 65 69 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 (,] 𝐵 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 71 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 72 | 71 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 73 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 74 | 73 1 | resubmet | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 75 | 72 74 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 76 | 70 75 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 (,] 𝐵 ) ∈ 𝐽 ) |
| 77 | 76 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐶 (,] 𝐵 ) ∈ 𝐽 ) ) |