This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resubmet.1 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| resubmet.2 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) | ||
| Assertion | resubmet | ⊢ ( 𝐴 ⊆ ℝ → 𝐽 = ( 𝑅 ↾t 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubmet.1 | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| 2 | resubmet.2 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) | |
| 3 | xpss12 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) ) | |
| 4 | 3 | anidms | ⊢ ( 𝐴 ⊆ ℝ → ( 𝐴 × 𝐴 ) ⊆ ( ℝ × ℝ ) ) |
| 5 | 4 | resabs1d | ⊢ ( 𝐴 ⊆ ℝ → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐴 ⊆ ℝ → ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 7 | 2 6 | eqtr4id | ⊢ ( 𝐴 ⊆ ℝ → 𝐽 = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 8 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 9 | 8 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 10 | eqid | ⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) | |
| 11 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 12 | 8 11 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 13 | 1 12 | eqtri | ⊢ 𝑅 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 14 | eqid | ⊢ ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) | |
| 15 | 10 13 14 | metrest | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑅 ↾t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 16 | 9 15 | mpan | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑅 ↾t 𝐴 ) = ( MetOpen ‘ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( 𝐴 × 𝐴 ) ) ) ) |
| 17 | 7 16 | eqtr4d | ⊢ ( 𝐴 ⊆ ℝ → 𝐽 = ( 𝑅 ↾t 𝐴 ) ) |