This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invghm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| invghm.m | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | invghm | ⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invghm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | invghm.m | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 1 2 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ Abel → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 7 | 1 3 2 | ablinvadd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 9 | 1 1 3 3 4 4 6 8 | isghmd | ⊢ ( 𝐺 ∈ Abel → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 10 | ghmgrp1 | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐺 ∈ Grp ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 12 | simprr | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 13 | simprl | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 14 | 1 3 2 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 15 | 11 12 13 14 | syl3anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 17 | simpl | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) | |
| 18 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ) |
| 19 | 11 13 18 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ) |
| 20 | 1 2 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) |
| 21 | 11 12 20 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) |
| 22 | 1 3 3 | ghmlin | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) = ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 23 | 17 19 21 22 | syl3anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( ( 𝐼 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑦 ) ) ) = ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 24 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
| 25 | 11 13 24 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) = 𝑥 ) |
| 26 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) = 𝑦 ) |
| 27 | 11 12 26 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) = 𝑦 ) |
| 28 | 25 27 | oveq12d | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑥 ) ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ ( 𝐼 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 29 | 16 23 28 | 3eqtrd | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 30 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 31 | 11 12 13 30 | syl3anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) |
| 32 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 33 | 11 31 32 | syl2anc | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 34 | 29 33 | eqtr3d | ⊢ ( ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 35 | 34 | ralrimivva | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 36 | 1 3 | isabl2 | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 37 | 10 35 36 | sylanbrc | ⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐺 ∈ Abel ) |
| 38 | 9 37 | impbii | ⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |