This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablinvadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablinvadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablinvadd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | ablinvadd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑁 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablinvadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablinvadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablinvadd.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 1 2 3 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Abel ) | |
| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 9 | simp2 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | simp3 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 13 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 14 | 8 12 13 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 15 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 16 | 7 11 14 15 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ 𝑌 ) + ( 𝑁 ‘ 𝑋 ) ) ) |
| 17 | 6 16 | eqtr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 + 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) + ( 𝑁 ‘ 𝑌 ) ) ) |