This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invghm.b | |- B = ( Base ` G ) |
|
| invghm.m | |- I = ( invg ` G ) |
||
| Assertion | invghm | |- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invghm.b | |- B = ( Base ` G ) |
|
| 2 | invghm.m | |- I = ( invg ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 5 | 1 2 | grpinvf | |- ( G e. Grp -> I : B --> B ) |
| 6 | 4 5 | syl | |- ( G e. Abel -> I : B --> B ) |
| 7 | 1 3 2 | ablinvadd | |- ( ( G e. Abel /\ x e. B /\ y e. B ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) |
| 8 | 7 | 3expb | |- ( ( G e. Abel /\ ( x e. B /\ y e. B ) ) -> ( I ` ( x ( +g ` G ) y ) ) = ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) |
| 9 | 1 1 3 3 4 4 6 8 | isghmd | |- ( G e. Abel -> I e. ( G GrpHom G ) ) |
| 10 | ghmgrp1 | |- ( I e. ( G GrpHom G ) -> G e. Grp ) |
|
| 11 | 10 | adantr | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> G e. Grp ) |
| 12 | simprr | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 13 | simprl | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 14 | 1 3 2 | grpinvadd | |- ( ( G e. Grp /\ y e. B /\ x e. B ) -> ( I ` ( y ( +g ` G ) x ) ) = ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) |
| 15 | 11 12 13 14 | syl3anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( y ( +g ` G ) x ) ) = ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) |
| 16 | 15 | fveq2d | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( I ` ( y ( +g ` G ) x ) ) ) = ( I ` ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) ) |
| 17 | simpl | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> I e. ( G GrpHom G ) ) |
|
| 18 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ x e. B ) -> ( I ` x ) e. B ) |
| 19 | 11 13 18 | syl2anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` x ) e. B ) |
| 20 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ y e. B ) -> ( I ` y ) e. B ) |
| 21 | 11 12 20 | syl2anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` y ) e. B ) |
| 22 | 1 3 3 | ghmlin | |- ( ( I e. ( G GrpHom G ) /\ ( I ` x ) e. B /\ ( I ` y ) e. B ) -> ( I ` ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) = ( ( I ` ( I ` x ) ) ( +g ` G ) ( I ` ( I ` y ) ) ) ) |
| 23 | 17 19 21 22 | syl3anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( ( I ` x ) ( +g ` G ) ( I ` y ) ) ) = ( ( I ` ( I ` x ) ) ( +g ` G ) ( I ` ( I ` y ) ) ) ) |
| 24 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ x e. B ) -> ( I ` ( I ` x ) ) = x ) |
| 25 | 11 13 24 | syl2anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( I ` x ) ) = x ) |
| 26 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ y e. B ) -> ( I ` ( I ` y ) ) = y ) |
| 27 | 11 12 26 | syl2anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( I ` y ) ) = y ) |
| 28 | 25 27 | oveq12d | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( ( I ` ( I ` x ) ) ( +g ` G ) ( I ` ( I ` y ) ) ) = ( x ( +g ` G ) y ) ) |
| 29 | 16 23 28 | 3eqtrd | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( I ` ( y ( +g ` G ) x ) ) ) = ( x ( +g ` G ) y ) ) |
| 30 | 1 3 | grpcl | |- ( ( G e. Grp /\ y e. B /\ x e. B ) -> ( y ( +g ` G ) x ) e. B ) |
| 31 | 11 12 13 30 | syl3anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( y ( +g ` G ) x ) e. B ) |
| 32 | 1 2 | grpinvinv | |- ( ( G e. Grp /\ ( y ( +g ` G ) x ) e. B ) -> ( I ` ( I ` ( y ( +g ` G ) x ) ) ) = ( y ( +g ` G ) x ) ) |
| 33 | 11 31 32 | syl2anc | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( I ` ( I ` ( y ( +g ` G ) x ) ) ) = ( y ( +g ` G ) x ) ) |
| 34 | 29 33 | eqtr3d | |- ( ( I e. ( G GrpHom G ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 35 | 34 | ralrimivva | |- ( I e. ( G GrpHom G ) -> A. x e. B A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 36 | 1 3 | isabl2 | |- ( G e. Abel <-> ( G e. Grp /\ A. x e. B A. y e. B ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
| 37 | 10 35 36 | sylanbrc | |- ( I e. ( G GrpHom G ) -> G e. Abel ) |
| 38 | 9 37 | impbii | |- ( G e. Abel <-> I e. ( G GrpHom G ) ) |