This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscmn.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | isabl2 | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscmn.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 4 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 5 | 1 2 | iscmn | ⊢ ( 𝐺 ∈ CMnd ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 6 | 5 | baib | ⊢ ( 𝐺 ∈ Mnd → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 ∈ CMnd ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
| 9 | 3 8 | bitri | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |