This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property V_ii of BourbakiTop1 p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | innei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑁 ∩ 𝑀 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 3 | ssinss1 | ⊢ ( 𝑁 ⊆ ∪ 𝐽 → ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ) |
| 6 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ ℎ ∈ 𝐽 ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ) | |
| 7 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) ) | |
| 8 | 6 7 | anim12dan | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ∃ ℎ ∈ 𝐽 ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) ) ) |
| 9 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) → ( ℎ ∩ 𝑣 ) ∈ 𝐽 ) | |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐽 ) → ( ℎ ∩ 𝑣 ) ∈ 𝐽 ) |
| 11 | ssin | ⊢ ( ( 𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣 ) ↔ 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ) | |
| 12 | 11 | biimpi | ⊢ ( ( 𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣 ) → 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ) |
| 13 | ss2in | ⊢ ( ( ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀 ) → ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) | |
| 14 | 12 13 | anim12i | ⊢ ( ( ( 𝑆 ⊆ ℎ ∧ 𝑆 ⊆ 𝑣 ) ∧ ( ℎ ⊆ 𝑁 ∧ 𝑣 ⊆ 𝑀 ) ) → ( 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ∧ ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 15 | 14 | an4s | ⊢ ( ( ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ∧ ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) ) → ( 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ∧ ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 16 | sseq2 | ⊢ ( 𝑔 = ( ℎ ∩ 𝑣 ) → ( 𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ) ) | |
| 17 | sseq1 | ⊢ ( 𝑔 = ( ℎ ∩ 𝑣 ) → ( 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ↔ ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) ) | |
| 18 | 16 17 | anbi12d | ⊢ ( 𝑔 = ( ℎ ∩ 𝑣 ) → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ↔ ( 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ∧ ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) |
| 19 | 18 | rspcev | ⊢ ( ( ( ℎ ∩ 𝑣 ) ∈ 𝐽 ∧ ( 𝑆 ⊆ ( ℎ ∩ 𝑣 ) ∧ ( ℎ ∩ 𝑣 ) ⊆ ( 𝑁 ∩ 𝑀 ) ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 20 | 10 15 19 | syl2an | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ∧ ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 21 | 20 | expr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ) → ( ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) |
| 22 | 21 | an32s | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ) ∧ ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) |
| 23 | 22 | rexlimdva | ⊢ ( ( ( 𝐽 ∈ Top ∧ ℎ ∈ 𝐽 ) ∧ ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) |
| 24 | 23 | rexlimdva2 | ⊢ ( 𝐽 ∈ Top → ( ∃ ℎ ∈ 𝐽 ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) ) |
| 25 | 24 | imp32 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∃ ℎ ∈ 𝐽 ( 𝑆 ⊆ ℎ ∧ ℎ ⊆ 𝑁 ) ∧ ∃ 𝑣 ∈ 𝐽 ( 𝑆 ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑀 ) ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 26 | 8 25 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 27 | 26 | 3impb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) |
| 28 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 29 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( 𝑁 ∩ 𝑀 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) ) |
| 30 | 28 29 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝑁 ∩ 𝑀 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) ) |
| 31 | 30 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝑁 ∩ 𝑀 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑁 ∩ 𝑀 ) ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ ( 𝑁 ∩ 𝑀 ) ) ) ) ) |
| 32 | 5 27 31 | mpbir2and | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑁 ∩ 𝑀 ) ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |