This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnneiid | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ↔ 𝑁 ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) | |
| 2 | eqss | ⊢ ( 𝑁 = 𝑥 ↔ ( 𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) ) | |
| 3 | eleq1a | ⊢ ( 𝑥 ∈ 𝐽 → ( 𝑁 = 𝑥 → 𝑁 ∈ 𝐽 ) ) | |
| 4 | 2 3 | biimtrrid | ⊢ ( 𝑥 ∈ 𝐽 → ( ( 𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) → 𝑁 ∈ 𝐽 ) ) |
| 5 | 4 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁 ) → 𝑁 ∈ 𝐽 ) |
| 6 | 1 5 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ) → 𝑁 ∈ 𝐽 ) |
| 7 | 6 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) → 𝑁 ∈ 𝐽 ) ) |
| 8 | ssid | ⊢ 𝑁 ⊆ 𝑁 | |
| 9 | opnneiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑁 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ) | |
| 10 | 9 | 3exp | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ 𝐽 → ( 𝑁 ⊆ 𝑁 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ) ) ) |
| 11 | 8 10 | mpii | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ 𝐽 → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 12 | 7 11 | impbid | ⊢ ( 𝐽 ∈ Top → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑁 ) ↔ 𝑁 ∈ 𝐽 ) ) |