This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property V_ii of BourbakiTop1 p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | innei | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) -> ( N i^i M ) e. ( ( nei ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | neii1 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> N C_ U. J ) |
| 3 | ssinss1 | |- ( N C_ U. J -> ( N i^i M ) C_ U. J ) |
|
| 4 | 2 3 | syl | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> ( N i^i M ) C_ U. J ) |
| 5 | 4 | 3adant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) -> ( N i^i M ) C_ U. J ) |
| 6 | neii2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. h e. J ( S C_ h /\ h C_ N ) ) |
|
| 7 | neii2 | |- ( ( J e. Top /\ M e. ( ( nei ` J ) ` S ) ) -> E. v e. J ( S C_ v /\ v C_ M ) ) |
|
| 8 | 6 7 | anim12dan | |- ( ( J e. Top /\ ( N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) ) -> ( E. h e. J ( S C_ h /\ h C_ N ) /\ E. v e. J ( S C_ v /\ v C_ M ) ) ) |
| 9 | inopn | |- ( ( J e. Top /\ h e. J /\ v e. J ) -> ( h i^i v ) e. J ) |
|
| 10 | 9 | 3expa | |- ( ( ( J e. Top /\ h e. J ) /\ v e. J ) -> ( h i^i v ) e. J ) |
| 11 | ssin | |- ( ( S C_ h /\ S C_ v ) <-> S C_ ( h i^i v ) ) |
|
| 12 | 11 | biimpi | |- ( ( S C_ h /\ S C_ v ) -> S C_ ( h i^i v ) ) |
| 13 | ss2in | |- ( ( h C_ N /\ v C_ M ) -> ( h i^i v ) C_ ( N i^i M ) ) |
|
| 14 | 12 13 | anim12i | |- ( ( ( S C_ h /\ S C_ v ) /\ ( h C_ N /\ v C_ M ) ) -> ( S C_ ( h i^i v ) /\ ( h i^i v ) C_ ( N i^i M ) ) ) |
| 15 | 14 | an4s | |- ( ( ( S C_ h /\ h C_ N ) /\ ( S C_ v /\ v C_ M ) ) -> ( S C_ ( h i^i v ) /\ ( h i^i v ) C_ ( N i^i M ) ) ) |
| 16 | sseq2 | |- ( g = ( h i^i v ) -> ( S C_ g <-> S C_ ( h i^i v ) ) ) |
|
| 17 | sseq1 | |- ( g = ( h i^i v ) -> ( g C_ ( N i^i M ) <-> ( h i^i v ) C_ ( N i^i M ) ) ) |
|
| 18 | 16 17 | anbi12d | |- ( g = ( h i^i v ) -> ( ( S C_ g /\ g C_ ( N i^i M ) ) <-> ( S C_ ( h i^i v ) /\ ( h i^i v ) C_ ( N i^i M ) ) ) ) |
| 19 | 18 | rspcev | |- ( ( ( h i^i v ) e. J /\ ( S C_ ( h i^i v ) /\ ( h i^i v ) C_ ( N i^i M ) ) ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) |
| 20 | 10 15 19 | syl2an | |- ( ( ( ( J e. Top /\ h e. J ) /\ v e. J ) /\ ( ( S C_ h /\ h C_ N ) /\ ( S C_ v /\ v C_ M ) ) ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) |
| 21 | 20 | expr | |- ( ( ( ( J e. Top /\ h e. J ) /\ v e. J ) /\ ( S C_ h /\ h C_ N ) ) -> ( ( S C_ v /\ v C_ M ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) |
| 22 | 21 | an32s | |- ( ( ( ( J e. Top /\ h e. J ) /\ ( S C_ h /\ h C_ N ) ) /\ v e. J ) -> ( ( S C_ v /\ v C_ M ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) |
| 23 | 22 | rexlimdva | |- ( ( ( J e. Top /\ h e. J ) /\ ( S C_ h /\ h C_ N ) ) -> ( E. v e. J ( S C_ v /\ v C_ M ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) |
| 24 | 23 | rexlimdva2 | |- ( J e. Top -> ( E. h e. J ( S C_ h /\ h C_ N ) -> ( E. v e. J ( S C_ v /\ v C_ M ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) ) |
| 25 | 24 | imp32 | |- ( ( J e. Top /\ ( E. h e. J ( S C_ h /\ h C_ N ) /\ E. v e. J ( S C_ v /\ v C_ M ) ) ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) |
| 26 | 8 25 | syldan | |- ( ( J e. Top /\ ( N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) |
| 27 | 26 | 3impb | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) -> E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) |
| 28 | 1 | neiss2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ U. J ) |
| 29 | 1 | isnei | |- ( ( J e. Top /\ S C_ U. J ) -> ( ( N i^i M ) e. ( ( nei ` J ) ` S ) <-> ( ( N i^i M ) C_ U. J /\ E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) ) |
| 30 | 28 29 | syldan | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> ( ( N i^i M ) e. ( ( nei ` J ) ` S ) <-> ( ( N i^i M ) C_ U. J /\ E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) ) |
| 31 | 30 | 3adant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) -> ( ( N i^i M ) e. ( ( nei ` J ) ` S ) <-> ( ( N i^i M ) C_ U. J /\ E. g e. J ( S C_ g /\ g C_ ( N i^i M ) ) ) ) ) |
| 32 | 5 27 31 | mpbir2and | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ M e. ( ( nei ` J ) ` S ) ) -> ( N i^i M ) e. ( ( nei ` J ) ` S ) ) |