This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | ||
| infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | ||
| infxpenc2.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | ||
| infxpenc2.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | ||
| infxpenc2.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) | ||
| infxpenc2.h | ⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) | ||
| infxpenc2.l | ⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) | ||
| infxpenc2.x | ⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) | ||
| infxpenc2.y | ⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) | ||
| infxpenc2.j | ⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) | ||
| infxpenc2.z | ⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) | ||
| infxpenc2.t | ⊢ 𝑇 = ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) | ||
| infxpenc2.g | ⊢ 𝐺 = ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) | ||
| Assertion | infxpenc2lem2 | ⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 2 | infxpenc2.2 | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | |
| 3 | infxpenc2.3 | ⊢ 𝑊 = ( ◡ ( 𝑥 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑥 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) | |
| 4 | infxpenc2.4 | ⊢ ( 𝜑 → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) | |
| 5 | infxpenc2.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) = ∅ ) | |
| 6 | infxpenc2.k | ⊢ 𝐾 = ( 𝑦 ∈ { 𝑥 ∈ ( ( ω ↑o 2o ) ↑m 𝑊 ) ∣ 𝑥 finSupp ∅ } ↦ ( 𝐹 ∘ ( 𝑦 ∘ ◡ ( I ↾ 𝑊 ) ) ) ) | |
| 7 | infxpenc2.h | ⊢ 𝐻 = ( ( ( ω CNF 𝑊 ) ∘ 𝐾 ) ∘ ◡ ( ( ω ↑o 2o ) CNF 𝑊 ) ) | |
| 8 | infxpenc2.l | ⊢ 𝐿 = ( 𝑦 ∈ { 𝑥 ∈ ( ω ↑m ( 𝑊 ·o 2o ) ) ∣ 𝑥 finSupp ∅ } ↦ ( ( I ↾ ω ) ∘ ( 𝑦 ∘ ◡ ( 𝑌 ∘ ◡ 𝑋 ) ) ) ) | |
| 9 | infxpenc2.x | ⊢ 𝑋 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 𝑊 ·o 𝑧 ) +o 𝑤 ) ) | |
| 10 | infxpenc2.y | ⊢ 𝑌 = ( 𝑧 ∈ 2o , 𝑤 ∈ 𝑊 ↦ ( ( 2o ·o 𝑤 ) +o 𝑧 ) ) | |
| 11 | infxpenc2.j | ⊢ 𝐽 = ( ( ( ω CNF ( 2o ·o 𝑊 ) ) ∘ 𝐿 ) ∘ ◡ ( ω CNF ( 𝑊 ·o 2o ) ) ) | |
| 12 | infxpenc2.z | ⊢ 𝑍 = ( 𝑥 ∈ ( ω ↑o 𝑊 ) , 𝑦 ∈ ( ω ↑o 𝑊 ) ↦ ( ( ( ω ↑o 𝑊 ) ·o 𝑥 ) +o 𝑦 ) ) | |
| 13 | infxpenc2.t | ⊢ 𝑇 = ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ 〈 ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑥 ) , ( ( 𝑛 ‘ 𝑏 ) ‘ 𝑦 ) 〉 ) | |
| 14 | infxpenc2.g | ⊢ 𝐺 = ( ◡ ( 𝑛 ‘ 𝑏 ) ∘ ( ( ( 𝐻 ∘ 𝐽 ) ∘ 𝑍 ) ∘ 𝑇 ) ) | |
| 15 | 1 | mptexd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ∈ V ) |
| 16 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐴 ∈ On ) |
| 17 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑏 ∈ 𝐴 ) | |
| 18 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ On ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑏 ∈ On ) |
| 20 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ω ⊆ 𝑏 ) | |
| 21 | 1 2 3 | infxpenc2lem1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑊 ∈ ( On ∖ 1o ) ∧ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) ) |
| 22 | 21 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝑊 ∈ ( On ∖ 1o ) ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐹 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
| 24 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝐹 ‘ ∅ ) = ∅ ) |
| 25 | 21 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑊 ) ) |
| 26 | 19 20 22 23 24 25 6 7 8 9 10 11 12 13 14 | infxpenc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) |
| 27 | f1of | ⊢ ( 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 → 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ) |
| 29 | vex | ⊢ 𝑏 ∈ V | |
| 30 | 29 29 | xpex | ⊢ ( 𝑏 × 𝑏 ) ∈ V |
| 31 | fex | ⊢ ( ( 𝐺 : ( 𝑏 × 𝑏 ) ⟶ 𝑏 ∧ ( 𝑏 × 𝑏 ) ∈ V ) → 𝐺 ∈ V ) | |
| 32 | 28 30 31 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → 𝐺 ∈ V ) |
| 33 | eqid | ⊢ ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) | |
| 34 | 33 | fvmpt2 | ⊢ ( ( 𝑏 ∈ 𝐴 ∧ 𝐺 ∈ V ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) = 𝐺 ) |
| 35 | 17 32 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) = 𝐺 ) |
| 36 | 35 | f1oeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ 𝐺 : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 37 | 26 36 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏 ) ) → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) |
| 38 | 37 | expr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 39 | 38 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 40 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) | |
| 41 | 40 | nfeq2 | ⊢ Ⅎ 𝑏 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) |
| 42 | fveq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( 𝑔 ‘ 𝑏 ) = ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) ) | |
| 43 | 42 | f1oeq1d | ⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ↔ ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 44 | 43 | imbi2d | ⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
| 45 | 41 44 | ralbid | ⊢ ( 𝑔 = ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) → ( ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( ( 𝑏 ∈ 𝐴 ↦ 𝐺 ) ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
| 46 | 15 39 45 | spcedv | ⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |