This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infxpenc2.1 | |- ( ph -> A e. On ) |
|
| infxpenc2.2 | |- ( ph -> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
||
| infxpenc2.3 | |- W = ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) |
||
| Assertion | infxpenc2lem1 | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( W e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxpenc2.1 | |- ( ph -> A e. On ) |
|
| 2 | infxpenc2.2 | |- ( ph -> A. b e. A ( _om C_ b -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
|
| 3 | infxpenc2.3 | |- W = ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) |
|
| 4 | 2 | r19.21bi | |- ( ( ph /\ b e. A ) -> ( _om C_ b -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 5 | 4 | impr | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> E. w e. ( On \ 1o ) ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) |
| 6 | simpr | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
|
| 7 | oveq2 | |- ( x = w -> ( _om ^o x ) = ( _om ^o w ) ) |
|
| 8 | eqid | |- ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) = ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) |
|
| 9 | ovex | |- ( _om ^o w ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( w e. ( On \ 1o ) -> ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` w ) = ( _om ^o w ) ) |
| 11 | 10 | ad2antrl | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` w ) = ( _om ^o w ) ) |
| 12 | f1ofo | |- ( ( n ` b ) : b -1-1-onto-> ( _om ^o w ) -> ( n ` b ) : b -onto-> ( _om ^o w ) ) |
|
| 13 | 12 | ad2antll | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( n ` b ) : b -onto-> ( _om ^o w ) ) |
| 14 | forn | |- ( ( n ` b ) : b -onto-> ( _om ^o w ) -> ran ( n ` b ) = ( _om ^o w ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ran ( n ` b ) = ( _om ^o w ) ) |
| 16 | 11 15 | eqtr4d | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` w ) = ran ( n ` b ) ) |
| 17 | ovex | |- ( _om ^o x ) e. _V |
|
| 18 | 17 | 2a1i | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( x e. ( On \ 1o ) -> ( _om ^o x ) e. _V ) ) |
| 19 | omelon | |- _om e. On |
|
| 20 | 1onn | |- 1o e. _om |
|
| 21 | ondif2 | |- ( _om e. ( On \ 2o ) <-> ( _om e. On /\ 1o e. _om ) ) |
|
| 22 | 19 20 21 | mpbir2an | |- _om e. ( On \ 2o ) |
| 23 | eldifi | |- ( x e. ( On \ 1o ) -> x e. On ) |
|
| 24 | 23 | ad2antrl | |- ( ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) /\ ( x e. ( On \ 1o ) /\ y e. ( On \ 1o ) ) ) -> x e. On ) |
| 25 | eldifi | |- ( y e. ( On \ 1o ) -> y e. On ) |
|
| 26 | 25 | ad2antll | |- ( ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) /\ ( x e. ( On \ 1o ) /\ y e. ( On \ 1o ) ) ) -> y e. On ) |
| 27 | oecan | |- ( ( _om e. ( On \ 2o ) /\ x e. On /\ y e. On ) -> ( ( _om ^o x ) = ( _om ^o y ) <-> x = y ) ) |
|
| 28 | 22 24 26 27 | mp3an2i | |- ( ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) /\ ( x e. ( On \ 1o ) /\ y e. ( On \ 1o ) ) ) -> ( ( _om ^o x ) = ( _om ^o y ) <-> x = y ) ) |
| 29 | 28 | ex | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( x e. ( On \ 1o ) /\ y e. ( On \ 1o ) ) -> ( ( _om ^o x ) = ( _om ^o y ) <-> x = y ) ) ) |
| 30 | 18 29 | dom2lem | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) : ( On \ 1o ) -1-1-> _V ) |
| 31 | f1f1orn | |- ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) : ( On \ 1o ) -1-1-> _V -> ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) : ( On \ 1o ) -1-1-onto-> ran ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) : ( On \ 1o ) -1-1-onto-> ran ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ) |
| 33 | simprl | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> w e. ( On \ 1o ) ) |
|
| 34 | f1ocnvfv | |- ( ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) : ( On \ 1o ) -1-1-onto-> ran ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) /\ w e. ( On \ 1o ) ) -> ( ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` w ) = ran ( n ` b ) -> ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) = w ) ) |
|
| 35 | 32 33 34 | syl2anc | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` w ) = ran ( n ` b ) -> ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) = w ) ) |
| 36 | 16 35 | mpd | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( `' ( x e. ( On \ 1o ) |-> ( _om ^o x ) ) ` ran ( n ` b ) ) = w ) |
| 37 | 3 36 | eqtrid | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> W = w ) |
| 38 | 37 | eleq1d | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( W e. ( On \ 1o ) <-> w e. ( On \ 1o ) ) ) |
| 39 | 37 | oveq2d | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( _om ^o W ) = ( _om ^o w ) ) |
| 40 | 39 | f1oeq3d | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( n ` b ) : b -1-1-onto-> ( _om ^o W ) <-> ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) |
| 41 | 38 40 | anbi12d | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( ( W e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) <-> ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) ) |
| 42 | 6 41 | mpbird | |- ( ( ( ph /\ ( b e. A /\ _om C_ b ) ) /\ ( w e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o w ) ) ) -> ( W e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) ) |
| 43 | 5 42 | rexlimddv | |- ( ( ph /\ ( b e. A /\ _om C_ b ) ) -> ( W e. ( On \ 1o ) /\ ( n ` b ) : b -1-1-onto-> ( _om ^o W ) ) ) |