This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence form of infxpenc . A "uniform" or "canonical" version of infxpen , asserting the existence of a single function g that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxpenc2 | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom3c | ⊢ ( 𝐴 ∈ On → ∃ 𝑛 ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ) | |
| 2 | df-2o | ⊢ 2o = suc 1o | |
| 3 | 2 | oveq2i | ⊢ ( ω ↑o 2o ) = ( ω ↑o suc 1o ) |
| 4 | omelon | ⊢ ω ∈ On | |
| 5 | 1on | ⊢ 1o ∈ On | |
| 6 | oesuc | ⊢ ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ω ↑o suc 1o ) = ( ( ω ↑o 1o ) ·o ω ) |
| 8 | oe1 | ⊢ ( ω ∈ On → ( ω ↑o 1o ) = ω ) | |
| 9 | 4 8 | ax-mp | ⊢ ( ω ↑o 1o ) = ω |
| 10 | 9 | oveq1i | ⊢ ( ( ω ↑o 1o ) ·o ω ) = ( ω ·o ω ) |
| 11 | 3 7 10 | 3eqtri | ⊢ ( ω ↑o 2o ) = ( ω ·o ω ) |
| 12 | omxpen | ⊢ ( ( ω ∈ On ∧ ω ∈ On ) → ( ω ·o ω ) ≈ ( ω × ω ) ) | |
| 13 | 4 4 12 | mp2an | ⊢ ( ω ·o ω ) ≈ ( ω × ω ) |
| 14 | 11 13 | eqbrtri | ⊢ ( ω ↑o 2o ) ≈ ( ω × ω ) |
| 15 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 16 | 14 15 | entri | ⊢ ( ω ↑o 2o ) ≈ ω |
| 17 | 16 | a1i | ⊢ ( 𝐴 ∈ On → ( ω ↑o 2o ) ≈ ω ) |
| 18 | bren | ⊢ ( ( ω ↑o 2o ) ≈ ω ↔ ∃ 𝑓 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) |
| 20 | exdistrv | ⊢ ( ∃ 𝑛 ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ↔ ( ∃ 𝑛 ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑓 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) | |
| 21 | simpl | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → 𝐴 ∈ On ) | |
| 22 | simprl | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ) | |
| 23 | sseq2 | ⊢ ( 𝑥 = 𝑏 → ( ω ⊆ 𝑥 ↔ ω ⊆ 𝑏 ) ) | |
| 24 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( ω ↑o 𝑦 ) = ( ω ↑o 𝑤 ) ) | |
| 25 | 24 | f1oeq3d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ↔ ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 26 | 25 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑏 → ( 𝑛 ‘ 𝑥 ) = ( 𝑛 ‘ 𝑏 ) ) | |
| 28 | 27 | f1oeq1d | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝑛 ‘ 𝑏 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 29 | f1oeq2 | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑛 ‘ 𝑏 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) | |
| 30 | 28 29 | bitrd | ⊢ ( 𝑥 = 𝑏 → ( ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 31 | 30 | rexbidv | ⊢ ( 𝑥 = 𝑏 → ( ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑤 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 32 | 26 31 | bitrid | ⊢ ( 𝑥 = 𝑏 → ( ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ↔ ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 33 | 23 32 | imbi12d | ⊢ ( 𝑥 = 𝑏 → ( ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ↔ ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) ) |
| 34 | 33 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ↔ ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 35 | 22 34 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ∃ 𝑤 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑏 ) : 𝑏 –1-1-onto→ ( ω ↑o 𝑤 ) ) ) |
| 36 | oveq2 | ⊢ ( 𝑏 = 𝑧 → ( ω ↑o 𝑏 ) = ( ω ↑o 𝑧 ) ) | |
| 37 | 36 | cbvmptv | ⊢ ( 𝑏 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑏 ) ) = ( 𝑧 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑧 ) ) |
| 38 | 37 | cnveqi | ⊢ ◡ ( 𝑏 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑏 ) ) = ◡ ( 𝑧 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑧 ) ) |
| 39 | 38 | fveq1i | ⊢ ( ◡ ( 𝑏 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑏 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) = ( ◡ ( 𝑧 ∈ ( On ∖ 1o ) ↦ ( ω ↑o 𝑧 ) ) ‘ ran ( 𝑛 ‘ 𝑏 ) ) |
| 40 | 2on | ⊢ 2o ∈ On | |
| 41 | peano1 | ⊢ ∅ ∈ ω | |
| 42 | oen0 | ⊢ ( ( ( ω ∈ On ∧ 2o ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 2o ) ) | |
| 43 | 41 42 | mpan2 | ⊢ ( ( ω ∈ On ∧ 2o ∈ On ) → ∅ ∈ ( ω ↑o 2o ) ) |
| 44 | 4 40 43 | mp2an | ⊢ ∅ ∈ ( ω ↑o 2o ) |
| 45 | eqid | ⊢ ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) = ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) | |
| 46 | 45 | fveqf1o | ⊢ ( ( 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ∧ ∅ ∈ ( ω ↑o 2o ) ∧ ∅ ∈ ω ) → ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) : ( ω ↑o 2o ) –1-1-onto→ ω ∧ ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) ‘ ∅ ) = ∅ ) ) |
| 47 | 44 41 46 | mp3an23 | ⊢ ( 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω → ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) : ( ω ↑o 2o ) –1-1-onto→ ω ∧ ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) ‘ ∅ ) = ∅ ) ) |
| 48 | 47 | ad2antll | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) : ( ω ↑o 2o ) –1-1-onto→ ω ∧ ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) ‘ ∅ ) = ∅ ) ) |
| 49 | 48 | simpld | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) : ( ω ↑o 2o ) –1-1-onto→ ω ) |
| 50 | 48 | simprd | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ( ( 𝑓 ∘ ( ( I ↾ ( ( ω ↑o 2o ) ∖ { ∅ , ( ◡ 𝑓 ‘ ∅ ) } ) ) ∪ { 〈 ∅ , ( ◡ 𝑓 ‘ ∅ ) 〉 , 〈 ( ◡ 𝑓 ‘ ∅ ) , ∅ 〉 } ) ) ‘ ∅ ) = ∅ ) |
| 51 | 21 35 39 49 50 | infxpenc2lem3 | ⊢ ( ( 𝐴 ∈ On ∧ ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |
| 52 | 51 | ex | ⊢ ( 𝐴 ∈ On → ( ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
| 53 | 52 | exlimdvv | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑛 ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
| 54 | 20 53 | biimtrrid | ⊢ ( 𝐴 ∈ On → ( ( ∃ 𝑛 ∀ 𝑥 ∈ 𝐴 ( ω ⊆ 𝑥 → ∃ 𝑦 ∈ ( On ∖ 1o ) ( 𝑛 ‘ 𝑥 ) : 𝑥 –1-1-onto→ ( ω ↑o 𝑦 ) ) ∧ ∃ 𝑓 𝑓 : ( ω ↑o 2o ) –1-1-onto→ ω ) → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) ) |
| 55 | 1 19 54 | mp2and | ⊢ ( 𝐴 ∈ On → ∃ 𝑔 ∀ 𝑏 ∈ 𝐴 ( ω ⊆ 𝑏 → ( 𝑔 ‘ 𝑏 ) : ( 𝑏 × 𝑏 ) –1-1-onto→ 𝑏 ) ) |