This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oecan | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeordi | ⊢ ( ( 𝐶 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ) ) |
| 4 | oeordi | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ∈ 𝐵 → ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 7 | 3 6 | orim12d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) → ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 8 | 7 | con3d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) → ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 9 | eldifi | ⊢ ( 𝐴 ∈ ( On ∖ 2o ) → 𝐴 ∈ On ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐴 ∈ On ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐵 ∈ On ) | |
| 12 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 14 | simp3 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) | |
| 15 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ↑o 𝐶 ) ∈ On ) |
| 17 | eloni | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → Ord ( 𝐴 ↑o 𝐵 ) ) | |
| 18 | eloni | ⊢ ( ( 𝐴 ↑o 𝐶 ) ∈ On → Ord ( 𝐴 ↑o 𝐶 ) ) | |
| 19 | ordtri3 | ⊢ ( ( Ord ( 𝐴 ↑o 𝐵 ) ∧ Ord ( 𝐴 ↑o 𝐶 ) ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝐴 ↑o 𝐶 ) ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 21 | 13 16 20 | syl2anc | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ ¬ ( ( 𝐴 ↑o 𝐵 ) ∈ ( 𝐴 ↑o 𝐶 ) ∨ ( 𝐴 ↑o 𝐶 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 22 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 23 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 24 | ordtri3 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 26 | 25 | 3adant1 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 = 𝐶 ↔ ¬ ( 𝐵 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |
| 27 | 8 21 26 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) → 𝐵 = 𝐶 ) ) |
| 28 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ) | |
| 29 | 27 28 | impbid1 | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) = ( 𝐴 ↑o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |