This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxp | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) | |
| 2 | infxpabs | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) | |
| 3 | infunabs | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |
| 5 | 4 | adantrl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |
| 6 | 5 | ensymd | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐴 ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 7 | entr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≈ 𝐴 ∧ 𝐴 ≈ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 9 | 8 | expr | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ≼ 𝐴 → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 10 | 9 | adantrl | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐵 ≼ 𝐴 → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 11 | 1 10 | syl5 | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐵 ≺ 𝐴 → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 12 | domtri2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) | |
| 13 | 12 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| 14 | xpcomeng | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) | |
| 15 | 14 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ) |
| 16 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ∈ dom card ) | |
| 17 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → ω ≼ 𝐵 ) | |
| 18 | 17 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ω ≼ 𝐵 ) |
| 19 | infn0 | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) | |
| 20 | 19 | ad3antlr | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≠ ∅ ) |
| 21 | simpr | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 22 | infxpabs | ⊢ ( ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ) ∧ ( 𝐴 ≠ ∅ ∧ 𝐴 ≼ 𝐵 ) ) → ( 𝐵 × 𝐴 ) ≈ 𝐵 ) | |
| 23 | 16 18 20 21 22 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 × 𝐴 ) ≈ 𝐵 ) |
| 24 | uncom | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) | |
| 25 | infunabs | ⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) | |
| 26 | 16 18 21 25 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) |
| 27 | 24 26 | eqbrtrid | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ) |
| 28 | 27 | ensymd | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → 𝐵 ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 29 | entr | ⊢ ( ( ( 𝐵 × 𝐴 ) ≈ 𝐵 ∧ 𝐵 ≈ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 30 | 23 28 29 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 31 | entr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≈ ( 𝐵 × 𝐴 ) ∧ ( 𝐵 × 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 32 | 15 30 31 | syl2an2r | ⊢ ( ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ≼ 𝐵 → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 34 | 13 33 | sylbird | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( ¬ 𝐵 ≺ 𝐴 → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 35 | 11 34 | pm2.61d | ⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 × 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |