This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunabs | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ V ) |
| 5 | undjudom | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 7 | infdjuabs | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) | |
| 8 | domentr | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ) |
| 10 | unexg | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 11 | 1 4 10 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 12 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 13 | ssdomg | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 14 | 11 12 13 | mpisyl | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
| 15 | sbth | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) | |
| 16 | 9 14 15 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |