This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of TakeutiZaring p. 95. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infxp | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( A X. B ) ~~ ( A u. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( B ~< A -> B ~<_ A ) |
|
| 2 | infxpabs | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~~ A ) |
|
| 3 | infunabs | |- ( ( A e. dom card /\ _om ~<_ A /\ B ~<_ A ) -> ( A u. B ) ~~ A ) |
|
| 4 | 3 | 3expa | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ B ~<_ A ) -> ( A u. B ) ~~ A ) |
| 5 | 4 | adantrl | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A u. B ) ~~ A ) |
| 6 | 5 | ensymd | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> A ~~ ( A u. B ) ) |
| 7 | entr | |- ( ( ( A X. B ) ~~ A /\ A ~~ ( A u. B ) ) -> ( A X. B ) ~~ ( A u. B ) ) |
|
| 8 | 2 6 7 | syl2anc | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B =/= (/) /\ B ~<_ A ) ) -> ( A X. B ) ~~ ( A u. B ) ) |
| 9 | 8 | expr | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ B =/= (/) ) -> ( B ~<_ A -> ( A X. B ) ~~ ( A u. B ) ) ) |
| 10 | 9 | adantrl | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( B ~<_ A -> ( A X. B ) ~~ ( A u. B ) ) ) |
| 11 | 1 10 | syl5 | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( B ~< A -> ( A X. B ) ~~ ( A u. B ) ) ) |
| 12 | domtri2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B <-> -. B ~< A ) ) |
|
| 13 | 12 | ad2ant2r | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( A ~<_ B <-> -. B ~< A ) ) |
| 14 | xpcomeng | |- ( ( A e. dom card /\ B e. dom card ) -> ( A X. B ) ~~ ( B X. A ) ) |
|
| 15 | 14 | ad2ant2r | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( A X. B ) ~~ ( B X. A ) ) |
| 16 | simplrl | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> B e. dom card ) |
|
| 17 | domtr | |- ( ( _om ~<_ A /\ A ~<_ B ) -> _om ~<_ B ) |
|
| 18 | 17 | ad4ant24 | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> _om ~<_ B ) |
| 19 | infn0 | |- ( _om ~<_ A -> A =/= (/) ) |
|
| 20 | 19 | ad3antlr | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> A =/= (/) ) |
| 21 | simpr | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> A ~<_ B ) |
|
| 22 | infxpabs | |- ( ( ( B e. dom card /\ _om ~<_ B ) /\ ( A =/= (/) /\ A ~<_ B ) ) -> ( B X. A ) ~~ B ) |
|
| 23 | 16 18 20 21 22 | syl22anc | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> ( B X. A ) ~~ B ) |
| 24 | uncom | |- ( A u. B ) = ( B u. A ) |
|
| 25 | infunabs | |- ( ( B e. dom card /\ _om ~<_ B /\ A ~<_ B ) -> ( B u. A ) ~~ B ) |
|
| 26 | 16 18 21 25 | syl3anc | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> ( B u. A ) ~~ B ) |
| 27 | 24 26 | eqbrtrid | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> ( A u. B ) ~~ B ) |
| 28 | 27 | ensymd | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> B ~~ ( A u. B ) ) |
| 29 | entr | |- ( ( ( B X. A ) ~~ B /\ B ~~ ( A u. B ) ) -> ( B X. A ) ~~ ( A u. B ) ) |
|
| 30 | 23 28 29 | syl2anc | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> ( B X. A ) ~~ ( A u. B ) ) |
| 31 | entr | |- ( ( ( A X. B ) ~~ ( B X. A ) /\ ( B X. A ) ~~ ( A u. B ) ) -> ( A X. B ) ~~ ( A u. B ) ) |
|
| 32 | 15 30 31 | syl2an2r | |- ( ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) /\ A ~<_ B ) -> ( A X. B ) ~~ ( A u. B ) ) |
| 33 | 32 | ex | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( A ~<_ B -> ( A X. B ) ~~ ( A u. B ) ) ) |
| 34 | 13 33 | sylbird | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( -. B ~< A -> ( A X. B ) ~~ ( A u. B ) ) ) |
| 35 | 11 34 | pm2.61d | |- ( ( ( A e. dom card /\ _om ~<_ A ) /\ ( B e. dom card /\ B =/= (/) ) ) -> ( A X. B ) ~~ ( A u. B ) ) |