This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indistopon | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspr | ⊢ ( 𝑥 ⊆ { ∅ , 𝐴 } ↔ ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ∨ ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) ) ) | |
| 2 | unieq | ⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) | |
| 3 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | prid1 | ⊢ ∅ ∈ { ∅ , 𝐴 } |
| 6 | 3 5 | eqeltri | ⊢ ∪ ∅ ∈ { ∅ , 𝐴 } |
| 7 | 2 6 | eqeltrdi | ⊢ ( 𝑥 = ∅ → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 8 | 7 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = ∅ → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 9 | unieq | ⊢ ( 𝑥 = { ∅ } → ∪ 𝑥 = ∪ { ∅ } ) | |
| 10 | 4 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 11 | 10 5 | eqeltri | ⊢ ∪ { ∅ } ∈ { ∅ , 𝐴 } |
| 12 | 9 11 | eqeltrdi | ⊢ ( 𝑥 = { ∅ } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 13 | 12 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { ∅ } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 14 | 8 13 | jaod | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 15 | unieq | ⊢ ( 𝑥 = { 𝐴 } → ∪ 𝑥 = ∪ { 𝐴 } ) | |
| 16 | unisng | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) | |
| 17 | 15 16 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → ∪ 𝑥 = 𝐴 ) |
| 18 | prid2g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { ∅ , 𝐴 } ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 20 | 17 19 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 21 | 20 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 22 | unieq | ⊢ ( 𝑥 = { ∅ , 𝐴 } → ∪ 𝑥 = ∪ { ∅ , 𝐴 } ) | |
| 23 | uniprg | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) | |
| 24 | 4 23 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) |
| 25 | uncom | ⊢ ( ∅ ∪ 𝐴 ) = ( 𝐴 ∪ ∅ ) | |
| 26 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 27 | 25 26 | eqtri | ⊢ ( ∅ ∪ 𝐴 ) = 𝐴 |
| 28 | 24 27 | eqtrdi | ⊢ ( 𝐴 ∈ 𝑉 → ∪ { ∅ , 𝐴 } = 𝐴 ) |
| 29 | 22 28 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 = 𝐴 ) |
| 30 | 18 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 31 | 29 30 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 32 | 31 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 33 | 21 32 | jaod | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 34 | 14 33 | jaod | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ∨ ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 35 | 1 34 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 36 | 35 | alrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 37 | vex | ⊢ 𝑥 ∈ V | |
| 38 | 37 | elpr | ⊢ ( 𝑥 ∈ { ∅ , 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) |
| 39 | vex | ⊢ 𝑦 ∈ V | |
| 40 | 39 | elpr | ⊢ ( 𝑦 ∈ { ∅ , 𝐴 } ↔ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) |
| 41 | simpr | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) | |
| 42 | 41 | ineq2d | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) |
| 43 | in0 | ⊢ ( 𝑥 ∩ ∅ ) = ∅ | |
| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 45 | 44 5 | eqeltrdi | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 46 | 45 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 47 | simpr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) | |
| 48 | 47 | ineq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) |
| 49 | 48 43 | eqtrdi | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 50 | 49 5 | eqeltrdi | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 51 | 50 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 52 | simpl | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → 𝑥 = ∅ ) | |
| 53 | 52 | ineq1d | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( ∅ ∩ 𝑦 ) ) |
| 54 | 0in | ⊢ ( ∅ ∩ 𝑦 ) = ∅ | |
| 55 | 53 54 | eqtrdi | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 56 | 55 5 | eqeltrdi | ⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 57 | 56 | a1i | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 58 | ineq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐴 ) ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐴 ) ) |
| 60 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 61 | 59 60 | eqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝐴 ) |
| 62 | 18 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 63 | 61 62 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 64 | 63 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 65 | 46 51 57 64 | ccased | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ∧ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 66 | 65 | expdimp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ( ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 67 | 40 66 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ( 𝑦 ∈ { ∅ , 𝐴 } → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 68 | 67 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 69 | 68 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 70 | 38 69 | biimtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ { ∅ , 𝐴 } → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 71 | 70 | ralrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 72 | prex | ⊢ { ∅ , 𝐴 } ∈ V | |
| 73 | istopg | ⊢ ( { ∅ , 𝐴 } ∈ V → ( { ∅ , 𝐴 } ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) ) | |
| 74 | 72 73 | mp1i | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ , 𝐴 } ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) ) |
| 75 | 36 71 74 | mpbir2and | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ Top ) |
| 76 | 28 | eqcomd | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { ∅ , 𝐴 } ) |
| 77 | istopon | ⊢ ( { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { ∅ , 𝐴 } ∈ Top ∧ 𝐴 = ∪ { ∅ , 𝐴 } ) ) | |
| 78 | 75 76 77 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |