This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsets of a pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspr | ⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = ( { 𝐵 , 𝐶 } ∪ ∅ ) | |
| 2 | un0 | ⊢ ( { 𝐵 , 𝐶 } ∪ ∅ ) = { 𝐵 , 𝐶 } | |
| 3 | 1 2 | eqtri | ⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = { 𝐵 , 𝐶 } |
| 4 | 3 | sseq2i | ⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 ⊆ { 𝐵 , 𝐶 } ) |
| 5 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 6 | 5 | biantrur | ⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
| 7 | 4 6 | bitr3i | ⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
| 8 | ssunpr | ⊢ ( ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ) | |
| 9 | uncom | ⊢ ( ∅ ∪ { 𝐵 } ) = ( { 𝐵 } ∪ ∅ ) | |
| 10 | un0 | ⊢ ( { 𝐵 } ∪ ∅ ) = { 𝐵 } | |
| 11 | 9 10 | eqtri | ⊢ ( ∅ ∪ { 𝐵 } ) = { 𝐵 } |
| 12 | 11 | eqeq2i | ⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 } ) ↔ 𝐴 = { 𝐵 } ) |
| 13 | 12 | orbi2i | ⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
| 14 | uncom | ⊢ ( ∅ ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ∅ ) | |
| 15 | un0 | ⊢ ( { 𝐶 } ∪ ∅ ) = { 𝐶 } | |
| 16 | 14 15 | eqtri | ⊢ ( ∅ ∪ { 𝐶 } ) = { 𝐶 } |
| 17 | 16 | eqeq2i | ⊢ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ↔ 𝐴 = { 𝐶 } ) |
| 18 | 3 | eqeq2i | ⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 = { 𝐵 , 𝐶 } ) |
| 19 | 17 18 | orbi12i | ⊢ ( ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) |
| 20 | 13 19 | orbi12i | ⊢ ( ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |
| 21 | 7 8 20 | 3bitri | ⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |