This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indistopon | |- ( A e. V -> { (/) , A } e. ( TopOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspr | |- ( x C_ { (/) , A } <-> ( ( x = (/) \/ x = { (/) } ) \/ ( x = { A } \/ x = { (/) , A } ) ) ) |
|
| 2 | unieq | |- ( x = (/) -> U. x = U. (/) ) |
|
| 3 | uni0 | |- U. (/) = (/) |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 4 | prid1 | |- (/) e. { (/) , A } |
| 6 | 3 5 | eqeltri | |- U. (/) e. { (/) , A } |
| 7 | 2 6 | eqeltrdi | |- ( x = (/) -> U. x e. { (/) , A } ) |
| 8 | 7 | a1i | |- ( A e. V -> ( x = (/) -> U. x e. { (/) , A } ) ) |
| 9 | unieq | |- ( x = { (/) } -> U. x = U. { (/) } ) |
|
| 10 | 4 | unisn | |- U. { (/) } = (/) |
| 11 | 10 5 | eqeltri | |- U. { (/) } e. { (/) , A } |
| 12 | 9 11 | eqeltrdi | |- ( x = { (/) } -> U. x e. { (/) , A } ) |
| 13 | 12 | a1i | |- ( A e. V -> ( x = { (/) } -> U. x e. { (/) , A } ) ) |
| 14 | 8 13 | jaod | |- ( A e. V -> ( ( x = (/) \/ x = { (/) } ) -> U. x e. { (/) , A } ) ) |
| 15 | unieq | |- ( x = { A } -> U. x = U. { A } ) |
|
| 16 | unisng | |- ( A e. V -> U. { A } = A ) |
|
| 17 | 15 16 | sylan9eqr | |- ( ( A e. V /\ x = { A } ) -> U. x = A ) |
| 18 | prid2g | |- ( A e. V -> A e. { (/) , A } ) |
|
| 19 | 18 | adantr | |- ( ( A e. V /\ x = { A } ) -> A e. { (/) , A } ) |
| 20 | 17 19 | eqeltrd | |- ( ( A e. V /\ x = { A } ) -> U. x e. { (/) , A } ) |
| 21 | 20 | ex | |- ( A e. V -> ( x = { A } -> U. x e. { (/) , A } ) ) |
| 22 | unieq | |- ( x = { (/) , A } -> U. x = U. { (/) , A } ) |
|
| 23 | uniprg | |- ( ( (/) e. _V /\ A e. V ) -> U. { (/) , A } = ( (/) u. A ) ) |
|
| 24 | 4 23 | mpan | |- ( A e. V -> U. { (/) , A } = ( (/) u. A ) ) |
| 25 | uncom | |- ( (/) u. A ) = ( A u. (/) ) |
|
| 26 | un0 | |- ( A u. (/) ) = A |
|
| 27 | 25 26 | eqtri | |- ( (/) u. A ) = A |
| 28 | 24 27 | eqtrdi | |- ( A e. V -> U. { (/) , A } = A ) |
| 29 | 22 28 | sylan9eqr | |- ( ( A e. V /\ x = { (/) , A } ) -> U. x = A ) |
| 30 | 18 | adantr | |- ( ( A e. V /\ x = { (/) , A } ) -> A e. { (/) , A } ) |
| 31 | 29 30 | eqeltrd | |- ( ( A e. V /\ x = { (/) , A } ) -> U. x e. { (/) , A } ) |
| 32 | 31 | ex | |- ( A e. V -> ( x = { (/) , A } -> U. x e. { (/) , A } ) ) |
| 33 | 21 32 | jaod | |- ( A e. V -> ( ( x = { A } \/ x = { (/) , A } ) -> U. x e. { (/) , A } ) ) |
| 34 | 14 33 | jaod | |- ( A e. V -> ( ( ( x = (/) \/ x = { (/) } ) \/ ( x = { A } \/ x = { (/) , A } ) ) -> U. x e. { (/) , A } ) ) |
| 35 | 1 34 | biimtrid | |- ( A e. V -> ( x C_ { (/) , A } -> U. x e. { (/) , A } ) ) |
| 36 | 35 | alrimiv | |- ( A e. V -> A. x ( x C_ { (/) , A } -> U. x e. { (/) , A } ) ) |
| 37 | vex | |- x e. _V |
|
| 38 | 37 | elpr | |- ( x e. { (/) , A } <-> ( x = (/) \/ x = A ) ) |
| 39 | vex | |- y e. _V |
|
| 40 | 39 | elpr | |- ( y e. { (/) , A } <-> ( y = (/) \/ y = A ) ) |
| 41 | simpr | |- ( ( x = (/) /\ y = (/) ) -> y = (/) ) |
|
| 42 | 41 | ineq2d | |- ( ( x = (/) /\ y = (/) ) -> ( x i^i y ) = ( x i^i (/) ) ) |
| 43 | in0 | |- ( x i^i (/) ) = (/) |
|
| 44 | 42 43 | eqtrdi | |- ( ( x = (/) /\ y = (/) ) -> ( x i^i y ) = (/) ) |
| 45 | 44 5 | eqeltrdi | |- ( ( x = (/) /\ y = (/) ) -> ( x i^i y ) e. { (/) , A } ) |
| 46 | 45 | a1i | |- ( A e. V -> ( ( x = (/) /\ y = (/) ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 47 | simpr | |- ( ( x = A /\ y = (/) ) -> y = (/) ) |
|
| 48 | 47 | ineq2d | |- ( ( x = A /\ y = (/) ) -> ( x i^i y ) = ( x i^i (/) ) ) |
| 49 | 48 43 | eqtrdi | |- ( ( x = A /\ y = (/) ) -> ( x i^i y ) = (/) ) |
| 50 | 49 5 | eqeltrdi | |- ( ( x = A /\ y = (/) ) -> ( x i^i y ) e. { (/) , A } ) |
| 51 | 50 | a1i | |- ( A e. V -> ( ( x = A /\ y = (/) ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 52 | simpl | |- ( ( x = (/) /\ y = A ) -> x = (/) ) |
|
| 53 | 52 | ineq1d | |- ( ( x = (/) /\ y = A ) -> ( x i^i y ) = ( (/) i^i y ) ) |
| 54 | 0in | |- ( (/) i^i y ) = (/) |
|
| 55 | 53 54 | eqtrdi | |- ( ( x = (/) /\ y = A ) -> ( x i^i y ) = (/) ) |
| 56 | 55 5 | eqeltrdi | |- ( ( x = (/) /\ y = A ) -> ( x i^i y ) e. { (/) , A } ) |
| 57 | 56 | a1i | |- ( A e. V -> ( ( x = (/) /\ y = A ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 58 | ineq12 | |- ( ( x = A /\ y = A ) -> ( x i^i y ) = ( A i^i A ) ) |
|
| 59 | 58 | adantl | |- ( ( A e. V /\ ( x = A /\ y = A ) ) -> ( x i^i y ) = ( A i^i A ) ) |
| 60 | inidm | |- ( A i^i A ) = A |
|
| 61 | 59 60 | eqtrdi | |- ( ( A e. V /\ ( x = A /\ y = A ) ) -> ( x i^i y ) = A ) |
| 62 | 18 | adantr | |- ( ( A e. V /\ ( x = A /\ y = A ) ) -> A e. { (/) , A } ) |
| 63 | 61 62 | eqeltrd | |- ( ( A e. V /\ ( x = A /\ y = A ) ) -> ( x i^i y ) e. { (/) , A } ) |
| 64 | 63 | ex | |- ( A e. V -> ( ( x = A /\ y = A ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 65 | 46 51 57 64 | ccased | |- ( A e. V -> ( ( ( x = (/) \/ x = A ) /\ ( y = (/) \/ y = A ) ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 66 | 65 | expdimp | |- ( ( A e. V /\ ( x = (/) \/ x = A ) ) -> ( ( y = (/) \/ y = A ) -> ( x i^i y ) e. { (/) , A } ) ) |
| 67 | 40 66 | biimtrid | |- ( ( A e. V /\ ( x = (/) \/ x = A ) ) -> ( y e. { (/) , A } -> ( x i^i y ) e. { (/) , A } ) ) |
| 68 | 67 | ralrimiv | |- ( ( A e. V /\ ( x = (/) \/ x = A ) ) -> A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) |
| 69 | 68 | ex | |- ( A e. V -> ( ( x = (/) \/ x = A ) -> A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) ) |
| 70 | 38 69 | biimtrid | |- ( A e. V -> ( x e. { (/) , A } -> A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) ) |
| 71 | 70 | ralrimiv | |- ( A e. V -> A. x e. { (/) , A } A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) |
| 72 | prex | |- { (/) , A } e. _V |
|
| 73 | istopg | |- ( { (/) , A } e. _V -> ( { (/) , A } e. Top <-> ( A. x ( x C_ { (/) , A } -> U. x e. { (/) , A } ) /\ A. x e. { (/) , A } A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) ) ) |
|
| 74 | 72 73 | mp1i | |- ( A e. V -> ( { (/) , A } e. Top <-> ( A. x ( x C_ { (/) , A } -> U. x e. { (/) , A } ) /\ A. x e. { (/) , A } A. y e. { (/) , A } ( x i^i y ) e. { (/) , A } ) ) ) |
| 75 | 36 71 74 | mpbir2and | |- ( A e. V -> { (/) , A } e. Top ) |
| 76 | 28 | eqcomd | |- ( A e. V -> A = U. { (/) , A } ) |
| 77 | istopon | |- ( { (/) , A } e. ( TopOn ` A ) <-> ( { (/) , A } e. Top /\ A = U. { (/) , A } ) ) |
|
| 78 | 75 76 77 | sylanbrc | |- ( A e. V -> { (/) , A } e. ( TopOn ` A ) ) |