This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasless.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasless.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasless.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | ||
| imasless.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasless.l | ⊢ ≤ = ( le ‘ 𝑈 ) | ||
| imasleval.n | ⊢ 𝑁 = ( le ‘ 𝑅 ) | ||
| imasleval.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) | ||
| Assertion | imasleval | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasless.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasless.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 4 | imasless.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasless.l | ⊢ ≤ = ( le ‘ 𝑈 ) | |
| 6 | imasleval.n | ⊢ 𝑁 = ( le ‘ 𝑅 ) | |
| 7 | imasleval.e | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) | |
| 8 | fveq2 | ⊢ ( 𝑐 = 𝑋 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 9 | 8 | breq1d | ⊢ ( 𝑐 = 𝑋 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ) ) |
| 10 | breq1 | ⊢ ( 𝑐 = 𝑋 → ( 𝑐 𝑁 𝑑 ↔ 𝑋 𝑁 𝑑 ) ) | |
| 11 | 9 10 | bibi12d | ⊢ ( 𝑐 = 𝑋 → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑐 = 𝑋 → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) ↔ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑑 = 𝑌 → ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 14 | 13 | breq2d | ⊢ ( 𝑑 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ) ) |
| 15 | breq2 | ⊢ ( 𝑑 = 𝑌 → ( 𝑋 𝑁 𝑑 ↔ 𝑋 𝑁 𝑌 ) ) | |
| 16 | 14 15 | bibi12d | ⊢ ( 𝑑 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ↔ ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑑 = 𝑌 → ( ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑋 𝑁 𝑑 ) ) ↔ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) ) |
| 18 | fofn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 19 | 3 18 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
| 21 | 20 | fndmd | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → dom 𝐹 = 𝑉 ) |
| 22 | 21 | rexeqdv | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 23 | fnbrfvb | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) ) | |
| 24 | 20 23 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) ) |
| 25 | 24 | anbi1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 26 | ancom | ⊢ ( ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) | |
| 27 | vex | ⊢ 𝑏 ∈ V | |
| 28 | fvex | ⊢ ( 𝐹 ‘ 𝑑 ) ∈ V | |
| 29 | 27 28 | breldm | ⊢ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) → 𝑏 ∈ dom 𝐹 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) → 𝑏 ∈ dom 𝐹 ) |
| 31 | 30 | pm4.71ri | ⊢ ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 32 | 26 31 | bitri | ⊢ ( ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 33 | 32 | exbii | ⊢ ( ∃ 𝑏 ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑏 ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 34 | vex | ⊢ 𝑎 ∈ V | |
| 35 | 34 28 | brco | ⊢ ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑏 ( 𝑎 𝑁 𝑏 ∧ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) |
| 36 | df-rex | ⊢ ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ( 𝑏 ∈ dom 𝐹 ∧ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) | |
| 37 | 33 35 36 | 3bitr4i | ⊢ ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) |
| 38 | 20 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → 𝐹 Fn 𝑉 ) |
| 39 | fnbrfvb | ⊢ ( ( 𝐹 Fn 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) | |
| 40 | 38 39 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ) ) |
| 41 | 40 | anbi1d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 42 | 7 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
| 43 | 42 | an32s | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
| 44 | 43 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) ) |
| 45 | 44 | impl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝑎 𝑁 𝑏 ↔ 𝑐 𝑁 𝑑 ) ) |
| 46 | 45 | pm5.32da | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 47 | 46 | an32s | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 48 | 41 47 | bitr3d | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 49 | 48 | rexbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 50 | r19.41v | ⊢ ( ∃ 𝑏 ∈ 𝑉 ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) | |
| 51 | 49 50 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 52 | 21 | rexeqdv | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ ∃ 𝑏 ∈ 𝑉 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ) ) |
| 54 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑑 ∈ 𝑉 ) | |
| 55 | eqid | ⊢ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) | |
| 56 | fveqeq2 | ⊢ ( 𝑏 = 𝑑 → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) | |
| 57 | 56 | rspcev | ⊢ ( ( 𝑑 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 58 | 54 55 57 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 59 | 58 | biantrurd | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑏 ∈ 𝑉 ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 61 | 51 53 60 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( ∃ 𝑏 ∈ dom 𝐹 ( 𝑏 𝐹 ( 𝐹 ‘ 𝑑 ) ∧ 𝑎 𝑁 𝑏 ) ↔ 𝑐 𝑁 𝑑 ) ) |
| 62 | 37 61 | bitrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) → ( 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) |
| 63 | 62 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 64 | 25 63 | bitr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) ∧ 𝑎 ∈ 𝑉 ) → ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 65 | 64 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ 𝑉 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 66 | 22 65 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 67 | fvex | ⊢ ( 𝐹 ‘ 𝑐 ) ∈ V | |
| 68 | 67 34 | brcnv | ⊢ ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ↔ 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ) |
| 69 | 68 | anbi1i | ⊢ ( ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) |
| 70 | 34 67 | breldm | ⊢ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) → 𝑎 ∈ dom 𝐹 ) |
| 71 | 70 | adantr | ⊢ ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) → 𝑎 ∈ dom 𝐹 ) |
| 72 | 71 | pm4.71ri | ⊢ ( ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 73 | 69 72 | bitri | ⊢ ( ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 74 | 73 | exbii | ⊢ ( ∃ 𝑎 ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 75 | 67 28 | brco | ⊢ ( ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ↔ ∃ 𝑎 ( ( 𝐹 ‘ 𝑐 ) ◡ 𝐹 𝑎 ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) |
| 76 | df-rex | ⊢ ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ∃ 𝑎 ( 𝑎 ∈ dom 𝐹 ∧ ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ) ) | |
| 77 | 74 75 76 | 3bitr4ri | ⊢ ( ∃ 𝑎 ∈ dom 𝐹 ( 𝑎 𝐹 ( 𝐹 ‘ 𝑐 ) ∧ 𝑎 ( 𝐹 ∘ 𝑁 ) ( 𝐹 ‘ 𝑑 ) ) ↔ ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ) |
| 78 | r19.41v | ⊢ ( ∃ 𝑎 ∈ 𝑉 ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) | |
| 79 | 66 77 78 | 3bitr3g | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 80 | 1 2 3 4 6 5 | imasle | ⊢ ( 𝜑 → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ≤ = ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ) |
| 82 | 81 | breqd | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ ( 𝐹 ‘ 𝑐 ) ( ( 𝐹 ∘ 𝑁 ) ∘ ◡ 𝐹 ) ( 𝐹 ‘ 𝑑 ) ) ) |
| 83 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → 𝑐 ∈ 𝑉 ) | |
| 84 | eqid | ⊢ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) | |
| 85 | fveqeq2 | ⊢ ( 𝑎 = 𝑐 → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) ) ) | |
| 86 | 85 | rspcev | ⊢ ( ( 𝑐 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑐 ) ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 87 | 83 84 86 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 88 | 87 | biantrurd | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( 𝑐 𝑁 𝑑 ↔ ( ∃ 𝑎 ∈ 𝑉 ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑐 ) ∧ 𝑐 𝑁 𝑑 ) ) ) |
| 89 | 79 82 88 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) |
| 90 | 89 | expcom | ⊢ ( ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 𝐹 ‘ 𝑑 ) ↔ 𝑐 𝑁 𝑑 ) ) ) |
| 91 | 12 17 90 | vtocl2ga | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
| 92 | 91 | com12 | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) ) |
| 93 | 92 | 3impib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝑋 ) ≤ ( 𝐹 ‘ 𝑌 ) ↔ 𝑋 𝑁 𝑌 ) ) |