This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasless.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasless.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasless.f | |- ( ph -> F : V -onto-> B ) |
||
| imasless.r | |- ( ph -> R e. Z ) |
||
| imasless.l | |- .<_ = ( le ` U ) |
||
| imasleval.n | |- N = ( le ` R ) |
||
| imasleval.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
||
| Assertion | imasleval | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasless.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasless.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasless.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasless.r | |- ( ph -> R e. Z ) |
|
| 5 | imasless.l | |- .<_ = ( le ` U ) |
|
| 6 | imasleval.n | |- N = ( le ` R ) |
|
| 7 | imasleval.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
|
| 8 | fveq2 | |- ( c = X -> ( F ` c ) = ( F ` X ) ) |
|
| 9 | 8 | breq1d | |- ( c = X -> ( ( F ` c ) .<_ ( F ` d ) <-> ( F ` X ) .<_ ( F ` d ) ) ) |
| 10 | breq1 | |- ( c = X -> ( c N d <-> X N d ) ) |
|
| 11 | 9 10 | bibi12d | |- ( c = X -> ( ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) <-> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) ) |
| 12 | 11 | imbi2d | |- ( c = X -> ( ( ph -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) <-> ( ph -> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) ) ) |
| 13 | fveq2 | |- ( d = Y -> ( F ` d ) = ( F ` Y ) ) |
|
| 14 | 13 | breq2d | |- ( d = Y -> ( ( F ` X ) .<_ ( F ` d ) <-> ( F ` X ) .<_ ( F ` Y ) ) ) |
| 15 | breq2 | |- ( d = Y -> ( X N d <-> X N Y ) ) |
|
| 16 | 14 15 | bibi12d | |- ( d = Y -> ( ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) <-> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 17 | 16 | imbi2d | |- ( d = Y -> ( ( ph -> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) <-> ( ph -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) ) |
| 18 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 19 | 3 18 | syl | |- ( ph -> F Fn V ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> F Fn V ) |
| 21 | 20 | fndmd | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> dom F = V ) |
| 22 | 21 | rexeqdv | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 23 | fnbrfvb | |- ( ( F Fn V /\ a e. V ) -> ( ( F ` a ) = ( F ` c ) <-> a F ( F ` c ) ) ) |
|
| 24 | 20 23 | sylan | |- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( F ` a ) = ( F ` c ) <-> a F ( F ` c ) ) ) |
| 25 | 24 | anbi1d | |- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 26 | ancom | |- ( ( a N b /\ b F ( F ` d ) ) <-> ( b F ( F ` d ) /\ a N b ) ) |
|
| 27 | vex | |- b e. _V |
|
| 28 | fvex | |- ( F ` d ) e. _V |
|
| 29 | 27 28 | breldm | |- ( b F ( F ` d ) -> b e. dom F ) |
| 30 | 29 | adantr | |- ( ( b F ( F ` d ) /\ a N b ) -> b e. dom F ) |
| 31 | 30 | pm4.71ri | |- ( ( b F ( F ` d ) /\ a N b ) <-> ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 32 | 26 31 | bitri | |- ( ( a N b /\ b F ( F ` d ) ) <-> ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 33 | 32 | exbii | |- ( E. b ( a N b /\ b F ( F ` d ) ) <-> E. b ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 34 | vex | |- a e. _V |
|
| 35 | 34 28 | brco | |- ( a ( F o. N ) ( F ` d ) <-> E. b ( a N b /\ b F ( F ` d ) ) ) |
| 36 | df-rex | |- ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
|
| 37 | 33 35 36 | 3bitr4i | |- ( a ( F o. N ) ( F ` d ) <-> E. b e. dom F ( b F ( F ` d ) /\ a N b ) ) |
| 38 | 20 | ad2antrr | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> F Fn V ) |
| 39 | fnbrfvb | |- ( ( F Fn V /\ b e. V ) -> ( ( F ` b ) = ( F ` d ) <-> b F ( F ` d ) ) ) |
|
| 40 | 38 39 | sylan | |- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( F ` b ) = ( F ` d ) <-> b F ( F ` d ) ) ) |
| 41 | 40 | anbi1d | |- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( b F ( F ` d ) /\ a N b ) ) ) |
| 42 | 7 | 3expa | |- ( ( ( ph /\ ( a e. V /\ b e. V ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 43 | 42 | an32s | |- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ ( a e. V /\ b e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 44 | 43 | anassrs | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 45 | 44 | impl | |- ( ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) |
| 46 | 45 | pm5.32da | |- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 47 | 46 | an32s | |- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 48 | 41 47 | bitr3d | |- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( b F ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 49 | 48 | rexbidva | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. V ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 50 | r19.41v | |- ( E. b e. V ( ( F ` b ) = ( F ` d ) /\ c N d ) <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) |
|
| 51 | 49 50 | bitrdi | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. V ( b F ( F ` d ) /\ a N b ) <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 52 | 21 | rexeqdv | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( b F ( F ` d ) /\ a N b ) ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( b F ( F ` d ) /\ a N b ) ) ) |
| 54 | simprr | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> d e. V ) |
|
| 55 | eqid | |- ( F ` d ) = ( F ` d ) |
|
| 56 | fveqeq2 | |- ( b = d -> ( ( F ` b ) = ( F ` d ) <-> ( F ` d ) = ( F ` d ) ) ) |
|
| 57 | 56 | rspcev | |- ( ( d e. V /\ ( F ` d ) = ( F ` d ) ) -> E. b e. V ( F ` b ) = ( F ` d ) ) |
| 58 | 54 55 57 | sylancl | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> E. b e. V ( F ` b ) = ( F ` d ) ) |
| 59 | 58 | biantrurd | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( c N d <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 60 | 59 | ad2antrr | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( c N d <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 61 | 51 53 60 | 3bitr4d | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> c N d ) ) |
| 62 | 37 61 | bitrid | |- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( a ( F o. N ) ( F ` d ) <-> c N d ) ) |
| 63 | 62 | pm5.32da | |- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 64 | 25 63 | bitr3d | |- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 65 | 64 | rexbidva | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. V ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 66 | 22 65 | bitrd | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 67 | fvex | |- ( F ` c ) e. _V |
|
| 68 | 67 34 | brcnv | |- ( ( F ` c ) `' F a <-> a F ( F ` c ) ) |
| 69 | 68 | anbi1i | |- ( ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) |
| 70 | 34 67 | breldm | |- ( a F ( F ` c ) -> a e. dom F ) |
| 71 | 70 | adantr | |- ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) -> a e. dom F ) |
| 72 | 71 | pm4.71ri | |- ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 73 | 69 72 | bitri | |- ( ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 74 | 73 | exbii | |- ( E. a ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> E. a ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 75 | 67 28 | brco | |- ( ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) <-> E. a ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) ) |
| 76 | df-rex | |- ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
|
| 77 | 74 75 76 | 3bitr4ri | |- ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) ) |
| 78 | r19.41v | |- ( E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) |
|
| 79 | 66 77 78 | 3bitr3g | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 80 | 1 2 3 4 6 5 | imasle | |- ( ph -> .<_ = ( ( F o. N ) o. `' F ) ) |
| 81 | 80 | adantr | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> .<_ = ( ( F o. N ) o. `' F ) ) |
| 82 | 81 | breqd | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) .<_ ( F ` d ) <-> ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) ) ) |
| 83 | simprl | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> c e. V ) |
|
| 84 | eqid | |- ( F ` c ) = ( F ` c ) |
|
| 85 | fveqeq2 | |- ( a = c -> ( ( F ` a ) = ( F ` c ) <-> ( F ` c ) = ( F ` c ) ) ) |
|
| 86 | 85 | rspcev | |- ( ( c e. V /\ ( F ` c ) = ( F ` c ) ) -> E. a e. V ( F ` a ) = ( F ` c ) ) |
| 87 | 83 84 86 | sylancl | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> E. a e. V ( F ` a ) = ( F ` c ) ) |
| 88 | 87 | biantrurd | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( c N d <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 89 | 79 82 88 | 3bitr4d | |- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) |
| 90 | 89 | expcom | |- ( ( c e. V /\ d e. V ) -> ( ph -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) ) |
| 91 | 12 17 90 | vtocl2ga | |- ( ( X e. V /\ Y e. V ) -> ( ph -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 92 | 91 | com12 | |- ( ph -> ( ( X e. V /\ Y e. V ) -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 93 | 92 | 3impib | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) |