This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasf1oxms.r | ⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) | ||
| Assertion | imasf1oxms | ⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasf1oxms.r | ⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) | |
| 5 | eqid | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | eqid | ⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) | |
| 9 | 7 8 | xmsxmet | ⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) = ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 12 | 11 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 13 | 2 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ 𝑉 ) = ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 14 | 10 12 13 | 3eltr4d | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
| 15 | 1 2 3 4 5 6 14 | imasf1oxmet | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 16 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 18 | 1 2 17 4 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ 𝐵 ) = ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 20 | 15 19 | eleqtrd | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 21 | ssid | ⊢ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) | |
| 22 | xmetres2 | ⊢ ( ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) | |
| 23 | 20 21 22 | sylancl | ⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 24 | eqid | ⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) | |
| 25 | eqid | ⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) | |
| 26 | 1 2 17 4 24 25 | imastopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) = ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) ) |
| 27 | 24 7 8 | xmstopn | ⊢ ( 𝑅 ∈ ∞MetSp → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
| 28 | 4 27 | syl | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
| 29 | 12 | fveq2d | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
| 30 | 28 29 | eqtr4d | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑅 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) |
| 31 | 30 | oveq1d | ⊢ ( 𝜑 → ( ( TopOpen ‘ 𝑅 ) qTop 𝐹 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) |
| 32 | blbas | ⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ) | |
| 33 | 14 32 | syl | ⊢ ( 𝜑 → ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ) |
| 34 | unirnbl | ⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = 𝑉 ) | |
| 35 | f1oeq2 | ⊢ ( ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = 𝑉 → ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) | |
| 36 | 14 34 35 | 3syl | ⊢ ( 𝜑 → ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ↔ 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) ) |
| 37 | 3 36 | mpbird | ⊢ ( 𝜑 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ) |
| 38 | eqid | ⊢ ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) | |
| 39 | 38 | tgqtop | ⊢ ( ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ∧ 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 ) → ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
| 40 | 33 37 39 | syl2anc | ⊢ ( 𝜑 → ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
| 41 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) | |
| 42 | 41 | mopnval | ⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) |
| 43 | 14 42 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) = ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) |
| 44 | 43 | oveq1d | ⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ( ( topGen ‘ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) qTop 𝐹 ) ) |
| 45 | eqid | ⊢ ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( MetOpen ‘ ( dist ‘ 𝑈 ) ) | |
| 46 | 45 | mopnval | ⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
| 47 | 15 46 | syl | ⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ 𝑈 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
| 48 | xmetf | ⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) → ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) | |
| 49 | 20 48 | syl | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* ) |
| 50 | ffn | ⊢ ( ( dist ‘ 𝑈 ) : ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ⟶ ℝ* → ( dist ‘ 𝑈 ) Fn ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) | |
| 51 | fnresdm | ⊢ ( ( dist ‘ 𝑈 ) Fn ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( dist ‘ 𝑈 ) ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( dist ‘ 𝑈 ) ) |
| 53 | 52 | fveq2d | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) = ( MetOpen ‘ ( dist ‘ 𝑈 ) ) ) |
| 54 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 55 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –1-1→ 𝐵 ) | |
| 56 | 54 55 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –1-1→ 𝐵 ) |
| 57 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 58 | f1odm | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → dom 𝐹 = 𝑉 ) | |
| 59 | 54 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → dom 𝐹 = 𝑉 ) |
| 60 | 57 59 | sseqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑉 ) |
| 61 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
| 62 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑦 ∈ 𝑉 ) | |
| 63 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑟 ∈ ℝ* ) | |
| 64 | blssm | ⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) → ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) | |
| 65 | 61 62 63 64 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) |
| 66 | f1imaeq | ⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝐵 ∧ ( ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑉 ∧ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ⊆ 𝑉 ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) | |
| 67 | 56 60 65 66 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
| 68 | 54 16 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 69 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑥 ⊆ 𝐵 ) | |
| 70 | foimacnv | ⊢ ( ( 𝐹 : 𝑉 –onto→ 𝐵 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) | |
| 71 | 68 69 70 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = 𝑥 ) |
| 72 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 73 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 74 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → 𝑅 ∈ ∞MetSp ) |
| 75 | 72 73 54 74 5 6 61 62 63 | imasf1obl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
| 76 | 75 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) |
| 77 | 71 76 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( 𝐹 “ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝐹 “ ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 78 | 67 77 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) ) → ( ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 79 | 78 | 2rexbidva | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 80 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 81 | f1ofn | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 Fn 𝑉 ) | |
| 82 | oveq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) | |
| 83 | 82 | eqeq2d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 84 | 83 | rexbidv | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 85 | 84 | rexrn | ⊢ ( 𝐹 Fn 𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 86 | 80 81 85 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* 𝑥 = ( ( 𝐹 ‘ 𝑦 ) ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 87 | forn | ⊢ ( 𝐹 : 𝑉 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 88 | 80 16 87 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ran 𝐹 = 𝐵 ) |
| 89 | 88 | rexeqdv | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑧 ∈ ran 𝐹 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 90 | 79 86 89 | 3bitr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 91 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) ) |
| 92 | blrn | ⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( ∞Met ‘ 𝑉 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ 𝑥 ) = ( 𝑦 ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) 𝑟 ) ) ) |
| 94 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 95 | blrn | ⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) | |
| 96 | 94 95 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑟 ∈ ℝ* 𝑥 = ( 𝑧 ( ball ‘ ( dist ‘ 𝑈 ) ) 𝑟 ) ) ) |
| 97 | 90 93 96 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ↔ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
| 98 | 97 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) |
| 99 | f1ofo | ⊢ ( 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –1-1-onto→ 𝐵 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) | |
| 100 | 37 99 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) |
| 101 | 38 | elqtop2 | ⊢ ( ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ∈ TopBases ∧ 𝐹 : ∪ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) –onto→ 𝐵 ) → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) ) |
| 102 | 33 100 101 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝐵 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) ) ) ) |
| 103 | blf | ⊢ ( ( dist ‘ 𝑈 ) ∈ ( ∞Met ‘ 𝐵 ) → ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵 × ℝ* ) ⟶ 𝒫 𝐵 ) | |
| 104 | frn | ⊢ ( ( ball ‘ ( dist ‘ 𝑈 ) ) : ( 𝐵 × ℝ* ) ⟶ 𝒫 𝐵 → ran ( ball ‘ ( dist ‘ 𝑈 ) ) ⊆ 𝒫 𝐵 ) | |
| 105 | 15 103 104 | 3syl | ⊢ ( 𝜑 → ran ( ball ‘ ( dist ‘ 𝑈 ) ) ⊆ 𝒫 𝐵 ) |
| 106 | 105 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) → 𝑥 ∈ 𝒫 𝐵 ) ) |
| 107 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝐵 → 𝑥 ⊆ 𝐵 ) | |
| 108 | 106 107 | syl6 | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) → 𝑥 ⊆ 𝐵 ) ) |
| 109 | 108 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ↔ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) ) |
| 110 | 98 102 109 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ↔ 𝑥 ∈ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
| 111 | 110 | eqrdv | ⊢ ( 𝜑 → ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) |
| 112 | 111 | fveq2d | ⊢ ( 𝜑 → ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) = ( topGen ‘ ran ( ball ‘ ( dist ‘ 𝑈 ) ) ) ) |
| 113 | 47 53 112 | 3eqtr4d | ⊢ ( 𝜑 → ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) = ( topGen ‘ ( ran ( ball ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) ) ) |
| 114 | 40 44 113 | 3eqtr4d | ⊢ ( 𝜑 → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ) qTop 𝐹 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) |
| 115 | 26 31 114 | 3eqtrd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) |
| 116 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 117 | eqid | ⊢ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) | |
| 118 | 25 116 117 | isxms2 | ⊢ ( 𝑈 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( TopOpen ‘ 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ) ) ) |
| 119 | 23 115 118 | sylanbrc | ⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |