This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
||
| imasf1oxms.r | |- ( ph -> R e. *MetSp ) |
||
| Assertion | imasf1oxms | |- ( ph -> U e. *MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
|
| 4 | imasf1oxms.r | |- ( ph -> R e. *MetSp ) |
|
| 5 | eqid | |- ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 6 | eqid | |- ( dist ` U ) = ( dist ` U ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | eqid | |- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
|
| 9 | 7 8 | xmsxmet | |- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
| 10 | 4 9 | syl | |- ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
| 11 | 2 | sqxpeqd | |- ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 12 | 11 | reseq2d | |- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
| 13 | 2 | fveq2d | |- ( ph -> ( *Met ` V ) = ( *Met ` ( Base ` R ) ) ) |
| 14 | 10 12 13 | 3eltr4d | |- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 15 | 1 2 3 4 5 6 14 | imasf1oxmet | |- ( ph -> ( dist ` U ) e. ( *Met ` B ) ) |
| 16 | f1ofo | |- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
|
| 17 | 3 16 | syl | |- ( ph -> F : V -onto-> B ) |
| 18 | 1 2 17 4 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( *Met ` B ) = ( *Met ` ( Base ` U ) ) ) |
| 20 | 15 19 | eleqtrd | |- ( ph -> ( dist ` U ) e. ( *Met ` ( Base ` U ) ) ) |
| 21 | ssid | |- ( Base ` U ) C_ ( Base ` U ) |
|
| 22 | xmetres2 | |- ( ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
|
| 23 | 20 21 22 | sylancl | |- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
| 24 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 25 | eqid | |- ( TopOpen ` U ) = ( TopOpen ` U ) |
|
| 26 | 1 2 17 4 24 25 | imastopn | |- ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) |
| 27 | 24 7 8 | xmstopn | |- ( R e. *MetSp -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 28 | 4 27 | syl | |- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 29 | 12 | fveq2d | |- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 30 | 28 29 | eqtr4d | |- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) ) |
| 31 | 30 | oveq1d | |- ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) |
| 32 | blbas | |- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
|
| 33 | 14 32 | syl | |- ( ph -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
| 34 | unirnbl | |- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V ) |
|
| 35 | f1oeq2 | |- ( U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
|
| 36 | 14 34 35 | 3syl | |- ( ph -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
| 37 | 3 36 | mpbird | |- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) |
| 38 | eqid | |- U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) |
|
| 39 | 38 | tgqtop | |- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 40 | 33 37 39 | syl2anc | |- ( ph -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 41 | eqid | |- ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) |
|
| 42 | 41 | mopnval | |- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
| 43 | 14 42 | syl | |- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
| 44 | 43 | oveq1d | |- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) ) |
| 45 | eqid | |- ( MetOpen ` ( dist ` U ) ) = ( MetOpen ` ( dist ` U ) ) |
|
| 46 | 45 | mopnval | |- ( ( dist ` U ) e. ( *Met ` B ) -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 47 | 15 46 | syl | |- ( ph -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 48 | xmetf | |- ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
|
| 49 | 20 48 | syl | |- ( ph -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
| 50 | ffn | |- ( ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* -> ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) ) |
|
| 51 | fnresdm | |- ( ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
|
| 52 | 49 50 51 | 3syl | |- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
| 53 | 52 | fveq2d | |- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( MetOpen ` ( dist ` U ) ) ) |
| 54 | 3 | ad2antrr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-onto-> B ) |
| 55 | f1of1 | |- ( F : V -1-1-onto-> B -> F : V -1-1-> B ) |
|
| 56 | 54 55 | syl | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-> B ) |
| 57 | cnvimass | |- ( `' F " x ) C_ dom F |
|
| 58 | f1odm | |- ( F : V -1-1-onto-> B -> dom F = V ) |
|
| 59 | 54 58 | syl | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> dom F = V ) |
| 60 | 57 59 | sseqtrid | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( `' F " x ) C_ V ) |
| 61 | 14 | ad2antrr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 62 | simprl | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> y e. V ) |
|
| 63 | simprr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> r e. RR* ) |
|
| 64 | blssm | |- ( ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) /\ y e. V /\ r e. RR* ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
|
| 65 | 61 62 63 64 | syl3anc | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
| 66 | f1imaeq | |- ( ( F : V -1-1-> B /\ ( ( `' F " x ) C_ V /\ ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
|
| 67 | 56 60 65 66 | syl12anc | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 68 | 54 16 | syl | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -onto-> B ) |
| 69 | simplr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> x C_ B ) |
|
| 70 | foimacnv | |- ( ( F : V -onto-> B /\ x C_ B ) -> ( F " ( `' F " x ) ) = x ) |
|
| 71 | 68 69 70 | syl2anc | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( `' F " x ) ) = x ) |
| 72 | 1 | ad2antrr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> U = ( F "s R ) ) |
| 73 | 2 | ad2antrr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> V = ( Base ` R ) ) |
| 74 | 4 | ad2antrr | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> R e. *MetSp ) |
| 75 | 72 73 54 74 5 6 61 62 63 | imasf1obl | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 76 | 75 | eqcomd | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
| 77 | 71 76 | eqeq12d | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 78 | 67 77 | bitr3d | |- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 79 | 78 | 2rexbidva | |- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 80 | 3 | adantr | |- ( ( ph /\ x C_ B ) -> F : V -1-1-onto-> B ) |
| 81 | f1ofn | |- ( F : V -1-1-onto-> B -> F Fn V ) |
|
| 82 | oveq1 | |- ( z = ( F ` y ) -> ( z ( ball ` ( dist ` U ) ) r ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
|
| 83 | 82 | eqeq2d | |- ( z = ( F ` y ) -> ( x = ( z ( ball ` ( dist ` U ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 84 | 83 | rexbidv | |- ( z = ( F ` y ) -> ( E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 85 | 84 | rexrn | |- ( F Fn V -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 86 | 80 81 85 | 3syl | |- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 87 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 88 | 80 16 87 | 3syl | |- ( ( ph /\ x C_ B ) -> ran F = B ) |
| 89 | 88 | rexeqdv | |- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 90 | 79 86 89 | 3bitr2d | |- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 91 | 14 | adantr | |- ( ( ph /\ x C_ B ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 92 | blrn | |- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
|
| 93 | 91 92 | syl | |- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 94 | 15 | adantr | |- ( ( ph /\ x C_ B ) -> ( dist ` U ) e. ( *Met ` B ) ) |
| 95 | blrn | |- ( ( dist ` U ) e. ( *Met ` B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
|
| 96 | 94 95 | syl | |- ( ( ph /\ x C_ B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 97 | 90 93 96 | 3bitr4d | |- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
| 98 | 97 | pm5.32da | |- ( ph -> ( ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
| 99 | f1ofo | |- ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
|
| 100 | 37 99 | syl | |- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
| 101 | 38 | elqtop2 | |- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
| 102 | 33 100 101 | syl2anc | |- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
| 103 | blf | |- ( ( dist ` U ) e. ( *Met ` B ) -> ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B ) |
|
| 104 | frn | |- ( ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
|
| 105 | 15 103 104 | 3syl | |- ( ph -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
| 106 | 105 | sseld | |- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x e. ~P B ) ) |
| 107 | elpwi | |- ( x e. ~P B -> x C_ B ) |
|
| 108 | 106 107 | syl6 | |- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x C_ B ) ) |
| 109 | 108 | pm4.71rd | |- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
| 110 | 98 102 109 | 3bitr4d | |- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
| 111 | 110 | eqrdv | |- ( ph -> ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ran ( ball ` ( dist ` U ) ) ) |
| 112 | 111 | fveq2d | |- ( ph -> ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 113 | 47 53 112 | 3eqtr4d | |- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 114 | 40 44 113 | 3eqtr4d | |- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
| 115 | 26 31 114 | 3eqtrd | |- ( ph -> ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
| 116 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 117 | eqid | |- ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) |
|
| 118 | 25 116 117 | isxms2 | |- ( U e. *MetSp <-> ( ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) /\ ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) ) |
| 119 | 23 115 118 | sylanbrc | |- ( ph -> U e. *MetSp ) |