This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasf1obl.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| imasf1obl.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | ||
| imasf1obl.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | ||
| imasf1obl.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | ||
| imasf1obl.x | ⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) | ||
| imasf1obl.s | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) | ||
| Assertion | imasf1obl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasf1obl.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | imasf1obl.e | ⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 6 | imasf1obl.d | ⊢ 𝐷 = ( dist ‘ 𝑈 ) | |
| 7 | imasf1obl.m | ⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) | |
| 8 | imasf1obl.x | ⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) | |
| 9 | imasf1obl.s | ⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) | |
| 10 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 11 | 3 10 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 15 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ 𝑍 ) |
| 17 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑃 ∈ 𝑉 ) |
| 19 | f1ocnv | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 ) | |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 ) |
| 21 | f1of | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 → ◡ 𝐹 : 𝐵 ⟶ 𝑉 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 ⟶ 𝑉 ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑉 ) |
| 24 | 13 14 15 16 5 6 17 18 23 | imasdsf1o | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 25 | 12 24 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) = ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 26 | 25 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) |
| 27 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ ℝ* ) |
| 28 | elbl2 | ⊢ ( ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑆 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) | |
| 29 | 17 27 18 23 28 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) |
| 30 | 26 29 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |
| 31 | 30 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 32 | 1 2 3 4 5 6 7 | imasf1oxmet | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 33 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) | |
| 34 | 3 33 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 35 | 34 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 36 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ 𝑆 ∈ ℝ* ) → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ) ) | |
| 37 | 32 35 9 36 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ) ) |
| 38 | f1ofn | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 → ◡ 𝐹 Fn 𝐵 ) | |
| 39 | elpreima | ⊢ ( ◡ 𝐹 Fn 𝐵 → ( 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) | |
| 40 | 20 38 39 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 41 | 31 37 40 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 42 | 41 | eqrdv | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) = ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |
| 43 | imacnvcnv | ⊢ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) | |
| 44 | 42 43 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |