This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | ||
| imasf1oms.r | ⊢ ( 𝜑 → 𝑅 ∈ MetSp ) | ||
| Assertion | imasf1oms | ⊢ ( 𝜑 → 𝑈 ∈ MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | ⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) | |
| 2 | imasf1obl.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | imasf1obl.f | ⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) | |
| 4 | imasf1oms.r | ⊢ ( 𝜑 → 𝑅 ∈ MetSp ) | |
| 5 | msxms | ⊢ ( 𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝑅 ∈ ∞MetSp ) |
| 7 | 1 2 3 6 | imasf1oxms | ⊢ ( 𝜑 → 𝑈 ∈ ∞MetSp ) |
| 8 | eqid | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) | |
| 9 | eqid | ⊢ ( dist ‘ 𝑈 ) = ( dist ‘ 𝑈 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) | |
| 12 | 10 11 | msmet | ⊢ ( 𝑅 ∈ MetSp → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 14 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( 𝑉 × 𝑉 ) = ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 15 | 14 | reseq2d | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 16 | 2 | fveq2d | ⊢ ( 𝜑 → ( Met ‘ 𝑉 ) = ( Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 17 | 13 15 16 | 3eltr4d | ⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) ∈ ( Met ‘ 𝑉 ) ) |
| 18 | 1 2 3 4 8 9 17 | imasf1omet | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( Met ‘ 𝐵 ) ) |
| 19 | f1ofo | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 –onto→ 𝐵 ) | |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝐵 ) |
| 21 | 1 2 20 4 | imasbas | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑈 ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 23 | 18 22 | eleqtrd | ⊢ ( 𝜑 → ( dist ‘ 𝑈 ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 24 | ssid | ⊢ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) | |
| 25 | metres2 | ⊢ ( ( ( dist ‘ 𝑈 ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ∧ ( Base ‘ 𝑈 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) | |
| 26 | 23 24 25 | sylancl | ⊢ ( 𝜑 → ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) |
| 27 | eqid | ⊢ ( TopOpen ‘ 𝑈 ) = ( TopOpen ‘ 𝑈 ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 29 | eqid | ⊢ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) = ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) | |
| 30 | 27 28 29 | isms | ⊢ ( 𝑈 ∈ MetSp ↔ ( 𝑈 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑈 ) ↾ ( ( Base ‘ 𝑈 ) × ( Base ‘ 𝑈 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑈 ) ) ) ) |
| 31 | 7 26 30 | sylanbrc | ⊢ ( 𝜑 → 𝑈 ∈ MetSp ) |