This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| idfu2nd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| idfu2nd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| idfu2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | idfu2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | idfu2nd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | idfu2nd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | idfu2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 8 | 1 2 3 4 5 6 | idfu2nd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) ‘ 𝐹 ) = ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) ) |
| 10 | fvresi | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → ( ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ‘ 𝐹 ) = 𝐹 ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) ‘ 𝐹 ) = 𝐹 ) |