This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set of functors between two categories. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| isfunc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| isfunc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| isfunc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| isfunc.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | ||
| isfunc.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | ||
| isfunc.x | ⊢ · = ( comp ‘ 𝐷 ) | ||
| isfunc.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| isfunc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| isfunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | ||
| Assertion | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfunc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | isfunc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | isfunc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | isfunc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | isfunc.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | |
| 6 | isfunc.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | |
| 7 | isfunc.x | ⊢ · = ( comp ‘ 𝐷 ) | |
| 8 | isfunc.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 9 | isfunc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 10 | isfunc.e | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | |
| 11 | fvexd | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) ∈ V ) | |
| 12 | simpl | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → 𝑑 = 𝐷 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) = ( Base ‘ 𝐷 ) ) |
| 14 | 13 1 | eqtr4di | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( Base ‘ 𝑑 ) = 𝐵 ) |
| 15 | simpr | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) | |
| 16 | simplr | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑒 = 𝐸 ) | |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑒 ) = ( Base ‘ 𝐸 ) ) |
| 18 | 17 2 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑒 ) = 𝐶 ) |
| 19 | 15 18 | feq23d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ↔ 𝑓 : 𝐵 ⟶ 𝐶 ) ) |
| 20 | 2 | fvexi | ⊢ 𝐶 ∈ V |
| 21 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 22 | 20 21 | elmap | ⊢ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐶 ) |
| 23 | 19 22 | bitr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ↔ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
| 24 | 15 | sqxpeqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
| 25 | 24 | ixpeq1d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ) |
| 26 | 16 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑒 ) = ( Hom ‘ 𝐸 ) ) |
| 27 | 26 4 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑒 ) = 𝐽 ) |
| 28 | 27 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 29 | simpll | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → 𝑑 = 𝐷 ) | |
| 30 | 29 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑑 ) = ( Hom ‘ 𝐷 ) ) |
| 31 | 30 3 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Hom ‘ 𝑑 ) = 𝐻 ) |
| 32 | 31 | fveq1d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) = ( 𝐻 ‘ 𝑧 ) ) |
| 33 | 28 32 | oveq12d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 34 | 33 | ixpeq2dv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 35 | 25 34 | eqtrd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 36 | 35 | eleq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 37 | 29 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑑 ) = ( Id ‘ 𝐷 ) ) |
| 38 | 37 5 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑑 ) = 1 ) |
| 39 | 38 | fveq1d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) = ( 1 ‘ 𝑥 ) ) |
| 40 | 39 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) ) |
| 41 | 16 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑒 ) = ( Id ‘ 𝐸 ) ) |
| 42 | 41 6 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( Id ‘ 𝑒 ) = 𝐼 ) |
| 43 | 42 | fveq1d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 44 | 40 43 | eqeq12d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 45 | 31 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 46 | 31 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 47 | 29 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑑 ) = ( comp ‘ 𝐷 ) ) |
| 48 | 47 7 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑑 ) = · ) |
| 49 | 48 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) |
| 50 | 49 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) = ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) ) |
| 52 | 16 | fveq2d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑒 ) = ( comp ‘ 𝐸 ) ) |
| 53 | 52 8 | eqtr4di | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( comp ‘ 𝑒 ) = 𝑂 ) |
| 54 | 53 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) = ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ) |
| 55 | 54 | oveqd | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
| 56 | 51 55 | eqeq12d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 57 | 46 56 | raleqbidv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 58 | 45 57 | raleqbidv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 59 | 15 58 | raleqbidv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 60 | 15 59 | raleqbidv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 61 | 44 60 | anbi12d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 62 | 15 61 | raleqbidv | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 63 | 23 36 62 | 3anbi123d | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 64 | df-3an | ⊢ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) | |
| 65 | 63 64 | bitrdi | ⊢ ( ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 66 | 11 14 65 | sbcied2 | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → ( [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 67 | 66 | opabbidv | ⊢ ( ( 𝑑 = 𝐷 ∧ 𝑒 = 𝐸 ) → { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
| 68 | df-func | ⊢ Func = ( 𝑑 ∈ Cat , 𝑒 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑑 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑒 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑒 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑑 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑑 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑒 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑑 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑑 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑑 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑒 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) | |
| 69 | ovex | ⊢ ( 𝐶 ↑m 𝐵 ) ∈ V | |
| 70 | vsnex | ⊢ { 𝑓 } ∈ V | |
| 71 | ovex | ⊢ ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V | |
| 72 | 71 | rgenw | ⊢ ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V |
| 73 | ixpexg | ⊢ ( ∀ 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V ) | |
| 74 | 72 73 | ax-mp | ⊢ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∈ V |
| 75 | 70 74 | xpex | ⊢ ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
| 76 | 69 75 | iunex | ⊢ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
| 77 | simpl | ⊢ ( ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) | |
| 78 | 77 | anim2i | ⊢ ( ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) → ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| 79 | 78 | 2eximi | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) → ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| 80 | elopab | ⊢ ( 𝑑 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) | |
| 81 | eliunxp | ⊢ ( 𝑑 ∈ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ↔ ∃ 𝑓 ∃ 𝑔 ( 𝑑 = 〈 𝑓 , 𝑔 〉 ∧ ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) ) | |
| 82 | 79 80 81 | 3imtr4i | ⊢ ( 𝑑 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } → 𝑑 ∈ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 83 | 82 | ssriv | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ⊆ ∪ 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ( { 𝑓 } × X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 84 | 76 83 | ssexi | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ∈ V |
| 85 | 67 68 84 | ovmpoa | ⊢ ( ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) → ( 𝐷 Func 𝐸 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
| 86 | 9 10 85 | syl2anc | ⊢ ( 𝜑 → ( 𝐷 Func 𝐸 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
| 87 | 86 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ) ) |
| 88 | brabv | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 89 | elex | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) → 𝐹 ∈ V ) | |
| 90 | elex | ⊢ ( 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) → 𝐺 ∈ V ) | |
| 91 | 89 90 | anim12i | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 92 | 91 | 3adant3 | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 93 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) | |
| 94 | 93 | eleq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ) ) |
| 95 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 96 | 93 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ) |
| 97 | 93 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) |
| 98 | 96 97 | oveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 99 | 98 | oveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 100 | 99 | ixpeq2dv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) = X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) |
| 101 | 95 100 | eleq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ↔ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 102 | 95 | oveqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑥 ) = ( 𝑥 𝐺 𝑥 ) ) |
| 103 | 102 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) ) |
| 104 | 93 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 105 | 104 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 106 | 103 105 | eqeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 107 | 95 | oveqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑧 ) = ( 𝑥 𝐺 𝑧 ) ) |
| 108 | 107 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) ) |
| 109 | 93 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 110 | 104 109 | opeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 111 | 93 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 112 | 110 111 | oveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) = ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ) |
| 113 | 95 | oveqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑦 𝑔 𝑧 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 114 | 113 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) = ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ) |
| 115 | 95 | oveqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 116 | 115 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) = ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) |
| 117 | 112 114 116 | oveq123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) |
| 118 | 108 117 | eqeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 119 | 118 | 2ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 120 | 119 | 2ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 121 | 106 120 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 122 | 121 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 123 | 94 101 122 | 3anbi123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 124 | 64 123 | bitr3id | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 125 | eqid | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } | |
| 126 | 124 125 | brabga | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 127 | 88 92 126 | pm5.21nii | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 128 | 20 21 | elmap | ⊢ ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 129 | 128 | 3anbi1i | ⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 130 | 127 129 | bitri | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝐶 ↑m 𝐵 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 𝑂 ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 131 | 87 130 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑧 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( 𝐻 ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( 1 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 𝑂 ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |