This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open interval starting at A is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | icoopnst.1 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) | |
| Assertion | icoopnst | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoopnst.1 | ⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 𝐴 [,] 𝐵 ) × ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 2 | iooretop | ⊢ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) | |
| 3 | simp1 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ∈ ℝ ) | |
| 4 | 3 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ∈ ℝ ) ) |
| 5 | ltm1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) < 𝐴 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 − 1 ) < 𝐴 ) |
| 7 | peano2rem | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 − 1 ) ∈ ℝ ) |
| 9 | ltletr | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) | |
| 10 | 9 | 3expb | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 11 | 8 10 | mpancom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( ( ( 𝐴 − 1 ) < 𝐴 ∧ 𝐴 ≤ 𝑣 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 12 | 6 11 | mpand | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝐴 ≤ 𝑣 → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 13 | 12 | impr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ) ) → ( 𝐴 − 1 ) < 𝑣 ) |
| 14 | 13 | 3adantr3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) → ( 𝐴 − 1 ) < 𝑣 ) |
| 15 | 14 | ex | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝐴 − 1 ) < 𝑣 ) ) |
| 17 | simp3 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 < 𝐶 ) | |
| 18 | 17 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 < 𝐶 ) ) |
| 19 | 4 16 18 | 3jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 20 | simp2 | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝐴 ≤ 𝑣 ) | |
| 21 | 20 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝐴 ≤ 𝑣 ) ) |
| 22 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 23 | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 24 | 22 23 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 25 | 24 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 26 | ltleletr | ⊢ ( ( 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) | |
| 27 | 26 | 3expa | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 28 | 27 | an31s | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) → ( ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) → 𝑣 ≤ 𝐵 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) ∧ ( 𝑣 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → 𝑣 ≤ 𝐵 ) |
| 30 | 29 | ancom2s | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑣 ∈ ℝ ) ∧ ( 𝐶 ≤ 𝐵 ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 31 | 30 | an4s | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 32 | 31 | 3adantr2 | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) → 𝑣 ≤ 𝐵 ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 34 | 33 | anasss | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 35 | 34 | 3adantr2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 36 | 35 | adantll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 37 | 25 36 | syldan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → 𝑣 ≤ 𝐵 ) ) |
| 38 | 4 21 37 | 3jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 39 | 19 38 | jcad | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) → ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 40 | simpl1 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 ∈ ℝ ) | |
| 41 | simpr2 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝐴 ≤ 𝑣 ) | |
| 42 | simpl3 | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → 𝑣 < 𝐶 ) | |
| 43 | 40 41 42 | 3jca | ⊢ ( ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) → ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) |
| 44 | 39 43 | impbid1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 45 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 46 | 25 | simp1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 47 | 46 | rexrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐶 ∈ ℝ* ) |
| 48 | elico2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ* ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) ) | |
| 49 | 45 47 48 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 50 | elin | ⊢ ( 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) | |
| 51 | 7 | rexrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 1 ) ∈ ℝ* ) |
| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 − 1 ) ∈ ℝ* ) |
| 53 | elioo2 | ⊢ ( ( ( 𝐴 − 1 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) | |
| 54 | 52 47 53 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ↔ ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ) ) |
| 55 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) | |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) |
| 57 | 54 56 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( ( 𝑣 ∈ ( ( 𝐴 − 1 ) (,) 𝐶 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 58 | 50 57 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( ( 𝑣 ∈ ℝ ∧ ( 𝐴 − 1 ) < 𝑣 ∧ 𝑣 < 𝐶 ) ∧ ( 𝑣 ∈ ℝ ∧ 𝐴 ≤ 𝑣 ∧ 𝑣 ≤ 𝐵 ) ) ) ) |
| 59 | 44 49 58 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝑣 ∈ ( 𝐴 [,) 𝐶 ) ↔ 𝑣 ∈ ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 60 | 59 | eqrdv | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 61 | ineq1 | ⊢ ( 𝑣 = ( ( 𝐴 − 1 ) (,) 𝐶 ) → ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) | |
| 62 | 61 | rspceeqv | ⊢ ( ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐴 [,) 𝐶 ) = ( ( ( 𝐴 − 1 ) (,) 𝐶 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 63 | 2 60 62 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 64 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 65 | ovex | ⊢ ( 𝐴 [,] 𝐵 ) ∈ V | |
| 66 | elrest | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 67 | 64 65 66 | mp2an | ⊢ ( ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ↔ ∃ 𝑣 ∈ ( topGen ‘ ran (,) ) ( 𝐴 [,) 𝐶 ) = ( 𝑣 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 68 | 63 67 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 69 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 70 | 69 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 71 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 72 | 71 1 | resubmet | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 73 | 70 72 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 74 | 68 73 | eleqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ) → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) |
| 75 | 74 | ex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) → ( 𝐴 [,) 𝐶 ) ∈ 𝐽 ) ) |