This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open interval starting at A is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | icoopnst.1 | |- J = ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
|
| Assertion | icoopnst | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A (,] B ) -> ( A [,) C ) e. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoopnst.1 | |- J = ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
|
| 2 | iooretop | |- ( ( A - 1 ) (,) C ) e. ( topGen ` ran (,) ) |
|
| 3 | simp1 | |- ( ( v e. RR /\ A <_ v /\ v < C ) -> v e. RR ) |
|
| 4 | 3 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v e. RR ) ) |
| 5 | ltm1 | |- ( A e. RR -> ( A - 1 ) < A ) |
|
| 6 | 5 | adantr | |- ( ( A e. RR /\ v e. RR ) -> ( A - 1 ) < A ) |
| 7 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 8 | 7 | adantr | |- ( ( A e. RR /\ v e. RR ) -> ( A - 1 ) e. RR ) |
| 9 | ltletr | |- ( ( ( A - 1 ) e. RR /\ A e. RR /\ v e. RR ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
|
| 10 | 9 | 3expb | |- ( ( ( A - 1 ) e. RR /\ ( A e. RR /\ v e. RR ) ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
| 11 | 8 10 | mpancom | |- ( ( A e. RR /\ v e. RR ) -> ( ( ( A - 1 ) < A /\ A <_ v ) -> ( A - 1 ) < v ) ) |
| 12 | 6 11 | mpand | |- ( ( A e. RR /\ v e. RR ) -> ( A <_ v -> ( A - 1 ) < v ) ) |
| 13 | 12 | impr | |- ( ( A e. RR /\ ( v e. RR /\ A <_ v ) ) -> ( A - 1 ) < v ) |
| 14 | 13 | 3adantr3 | |- ( ( A e. RR /\ ( v e. RR /\ A <_ v /\ v < C ) ) -> ( A - 1 ) < v ) |
| 15 | 14 | ex | |- ( A e. RR -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( A - 1 ) < v ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( A - 1 ) < v ) ) |
| 17 | simp3 | |- ( ( v e. RR /\ A <_ v /\ v < C ) -> v < C ) |
|
| 18 | 17 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v < C ) ) |
| 19 | 4 16 18 | 3jcad | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
| 20 | simp2 | |- ( ( v e. RR /\ A <_ v /\ v < C ) -> A <_ v ) |
|
| 21 | 20 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> A <_ v ) ) |
| 22 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 23 | elioc2 | |- ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
|
| 24 | 22 23 | sylan | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) ) |
| 25 | 24 | biimpa | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( C e. RR /\ A < C /\ C <_ B ) ) |
| 26 | ltleletr | |- ( ( v e. RR /\ C e. RR /\ B e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
|
| 27 | 26 | 3expa | |- ( ( ( v e. RR /\ C e. RR ) /\ B e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
| 28 | 27 | an31s | |- ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) -> ( ( v < C /\ C <_ B ) -> v <_ B ) ) |
| 29 | 28 | imp | |- ( ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) /\ ( v < C /\ C <_ B ) ) -> v <_ B ) |
| 30 | 29 | ancom2s | |- ( ( ( ( B e. RR /\ C e. RR ) /\ v e. RR ) /\ ( C <_ B /\ v < C ) ) -> v <_ B ) |
| 31 | 30 | an4s | |- ( ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) /\ ( v e. RR /\ v < C ) ) -> v <_ B ) |
| 32 | 31 | 3adantr2 | |- ( ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) /\ ( v e. RR /\ A <_ v /\ v < C ) ) -> v <_ B ) |
| 33 | 32 | ex | |- ( ( ( B e. RR /\ C e. RR ) /\ C <_ B ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
| 34 | 33 | anasss | |- ( ( B e. RR /\ ( C e. RR /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
| 35 | 34 | 3adantr2 | |- ( ( B e. RR /\ ( C e. RR /\ A < C /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
| 36 | 35 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ A < C /\ C <_ B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
| 37 | 25 36 | syldan | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> v <_ B ) ) |
| 38 | 4 21 37 | 3jcad | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
| 39 | 19 38 | jcad | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) -> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
| 40 | simpl1 | |- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> v e. RR ) |
|
| 41 | simpr2 | |- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> A <_ v ) |
|
| 42 | simpl3 | |- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> v < C ) |
|
| 43 | 40 41 42 | 3jca | |- ( ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) -> ( v e. RR /\ A <_ v /\ v < C ) ) |
| 44 | 39 43 | impbid1 | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. RR /\ A <_ v /\ v < C ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
| 45 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> A e. RR ) |
|
| 46 | 25 | simp1d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> C e. RR ) |
| 47 | 46 | rexrd | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> C e. RR* ) |
| 48 | elico2 | |- ( ( A e. RR /\ C e. RR* ) -> ( v e. ( A [,) C ) <-> ( v e. RR /\ A <_ v /\ v < C ) ) ) |
|
| 49 | 45 47 48 | syl2anc | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,) C ) <-> ( v e. RR /\ A <_ v /\ v < C ) ) ) |
| 50 | elin | |- ( v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) <-> ( v e. ( ( A - 1 ) (,) C ) /\ v e. ( A [,] B ) ) ) |
|
| 51 | 7 | rexrd | |- ( A e. RR -> ( A - 1 ) e. RR* ) |
| 52 | 51 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A - 1 ) e. RR* ) |
| 53 | elioo2 | |- ( ( ( A - 1 ) e. RR* /\ C e. RR* ) -> ( v e. ( ( A - 1 ) (,) C ) <-> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
|
| 54 | 52 47 53 | syl2anc | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( ( A - 1 ) (,) C ) <-> ( v e. RR /\ ( A - 1 ) < v /\ v < C ) ) ) |
| 55 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( v e. ( A [,] B ) <-> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
|
| 56 | 55 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,] B ) <-> ( v e. RR /\ A <_ v /\ v <_ B ) ) ) |
| 57 | 54 56 | anbi12d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( ( v e. ( ( A - 1 ) (,) C ) /\ v e. ( A [,] B ) ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
| 58 | 50 57 | bitrid | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) <-> ( ( v e. RR /\ ( A - 1 ) < v /\ v < C ) /\ ( v e. RR /\ A <_ v /\ v <_ B ) ) ) ) |
| 59 | 44 49 58 | 3bitr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( v e. ( A [,) C ) <-> v e. ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) ) |
| 60 | 59 | eqrdv | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) |
| 61 | ineq1 | |- ( v = ( ( A - 1 ) (,) C ) -> ( v i^i ( A [,] B ) ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) |
|
| 62 | 61 | rspceeqv | |- ( ( ( ( A - 1 ) (,) C ) e. ( topGen ` ran (,) ) /\ ( A [,) C ) = ( ( ( A - 1 ) (,) C ) i^i ( A [,] B ) ) ) -> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
| 63 | 2 60 62 | sylancr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
| 64 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 65 | ovex | |- ( A [,] B ) e. _V |
|
| 66 | elrest | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) <-> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) ) |
|
| 67 | 64 65 66 | mp2an | |- ( ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) <-> E. v e. ( topGen ` ran (,) ) ( A [,) C ) = ( v i^i ( A [,] B ) ) ) |
| 68 | 63 67 | sylibr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) e. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 69 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 70 | 69 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,] B ) C_ RR ) |
| 71 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 72 | 71 1 | resubmet | |- ( ( A [,] B ) C_ RR -> J = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 73 | 70 72 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> J = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 74 | 68 73 | eleqtrrd | |- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A (,] B ) ) -> ( A [,) C ) e. J ) |
| 75 | 74 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A (,] B ) -> ( A [,) C ) e. J ) ) |