This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for icccmp . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
||
| icccmp.3 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
||
| icccmp.4 | |- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
||
| icccmp.5 | |- ( ph -> A e. RR ) |
||
| icccmp.6 | |- ( ph -> B e. RR ) |
||
| icccmp.7 | |- ( ph -> A <_ B ) |
||
| icccmp.8 | |- ( ph -> U C_ J ) |
||
| icccmp.9 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| Assertion | icccmplem1 | |- ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | |- J = ( topGen ` ran (,) ) |
|
| 2 | icccmp.2 | |- T = ( J |`t ( A [,] B ) ) |
|
| 3 | icccmp.3 | |- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 4 | icccmp.4 | |- S = { x e. ( A [,] B ) | E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z } |
|
| 5 | icccmp.5 | |- ( ph -> A e. RR ) |
|
| 6 | icccmp.6 | |- ( ph -> B e. RR ) |
|
| 7 | icccmp.7 | |- ( ph -> A <_ B ) |
|
| 8 | icccmp.8 | |- ( ph -> U C_ J ) |
|
| 9 | icccmp.9 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 10 | 5 | rexrd | |- ( ph -> A e. RR* ) |
| 11 | 6 | rexrd | |- ( ph -> B e. RR* ) |
| 12 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 13 | 10 11 7 12 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 14 | 9 13 | sseldd | |- ( ph -> A e. U. U ) |
| 15 | eluni2 | |- ( A e. U. U <-> E. u e. U A e. u ) |
|
| 16 | 14 15 | sylib | |- ( ph -> E. u e. U A e. u ) |
| 17 | snssi | |- ( u e. U -> { u } C_ U ) |
|
| 18 | 17 | ad2antrl | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> { u } C_ U ) |
| 19 | snex | |- { u } e. _V |
|
| 20 | 19 | elpw | |- ( { u } e. ~P U <-> { u } C_ U ) |
| 21 | 18 20 | sylibr | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> { u } e. ~P U ) |
| 22 | snfi | |- { u } e. Fin |
|
| 23 | 22 | a1i | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> { u } e. Fin ) |
| 24 | 21 23 | elind | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> { u } e. ( ~P U i^i Fin ) ) |
| 25 | 10 | adantr | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> A e. RR* ) |
| 26 | iccid | |- ( A e. RR* -> ( A [,] A ) = { A } ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> ( A [,] A ) = { A } ) |
| 28 | snssi | |- ( A e. u -> { A } C_ u ) |
|
| 29 | 28 | ad2antll | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> { A } C_ u ) |
| 30 | 27 29 | eqsstrd | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> ( A [,] A ) C_ u ) |
| 31 | unieq | |- ( z = { u } -> U. z = U. { u } ) |
|
| 32 | unisnv | |- U. { u } = u |
|
| 33 | 31 32 | eqtrdi | |- ( z = { u } -> U. z = u ) |
| 34 | 33 | sseq2d | |- ( z = { u } -> ( ( A [,] A ) C_ U. z <-> ( A [,] A ) C_ u ) ) |
| 35 | 34 | rspcev | |- ( ( { u } e. ( ~P U i^i Fin ) /\ ( A [,] A ) C_ u ) -> E. z e. ( ~P U i^i Fin ) ( A [,] A ) C_ U. z ) |
| 36 | 24 30 35 | syl2anc | |- ( ( ph /\ ( u e. U /\ A e. u ) ) -> E. z e. ( ~P U i^i Fin ) ( A [,] A ) C_ U. z ) |
| 37 | 16 36 | rexlimddv | |- ( ph -> E. z e. ( ~P U i^i Fin ) ( A [,] A ) C_ U. z ) |
| 38 | oveq2 | |- ( x = A -> ( A [,] x ) = ( A [,] A ) ) |
|
| 39 | 38 | sseq1d | |- ( x = A -> ( ( A [,] x ) C_ U. z <-> ( A [,] A ) C_ U. z ) ) |
| 40 | 39 | rexbidv | |- ( x = A -> ( E. z e. ( ~P U i^i Fin ) ( A [,] x ) C_ U. z <-> E. z e. ( ~P U i^i Fin ) ( A [,] A ) C_ U. z ) ) |
| 41 | 40 4 | elrab2 | |- ( A e. S <-> ( A e. ( A [,] B ) /\ E. z e. ( ~P U i^i Fin ) ( A [,] A ) C_ U. z ) ) |
| 42 | 13 37 41 | sylanbrc | |- ( ph -> A e. S ) |
| 43 | 4 | ssrab3 | |- S C_ ( A [,] B ) |
| 44 | 43 | sseli | |- ( y e. S -> y e. ( A [,] B ) ) |
| 45 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
|
| 46 | 5 6 45 | syl2anc | |- ( ph -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 47 | 46 | biimpa | |- ( ( ph /\ y e. ( A [,] B ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
| 48 | 47 | simp3d | |- ( ( ph /\ y e. ( A [,] B ) ) -> y <_ B ) |
| 49 | 44 48 | sylan2 | |- ( ( ph /\ y e. S ) -> y <_ B ) |
| 50 | 49 | ralrimiva | |- ( ph -> A. y e. S y <_ B ) |
| 51 | 42 50 | jca | |- ( ph -> ( A e. S /\ A. y e. S y <_ B ) ) |