This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgvallem.1 | ⊢ ( i ↑ 𝐾 ) = 𝑇 | |
| Assertion | itgvallem | ⊢ ( 𝑘 = 𝐾 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgvallem.1 | ⊢ ( i ↑ 𝐾 ) = 𝑇 | |
| 2 | oveq2 | ⊢ ( 𝑘 = 𝐾 → ( i ↑ 𝑘 ) = ( i ↑ 𝐾 ) ) | |
| 3 | 2 1 | eqtrdi | ⊢ ( 𝑘 = 𝐾 → ( i ↑ 𝑘 ) = 𝑇 ) |
| 4 | 3 | oveq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝐵 / ( i ↑ 𝑘 ) ) = ( 𝐵 / 𝑇 ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) |
| 6 | 5 | breq2d | ⊢ ( 𝑘 = 𝐾 → ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) ) |
| 7 | 6 | anbi2d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) ) ) |
| 8 | 7 5 | ifbieq1d | ⊢ ( 𝑘 = 𝐾 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) |
| 9 | 8 | mpteq2dv | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / 𝑇 ) ) ) , ( ℜ ‘ ( 𝐵 / 𝑇 ) ) , 0 ) ) ) ) |