This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quotient of two negatives. (Contributed by Paul Chapman, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div2neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ∈ ℂ ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) | |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 6 | div12 | ⊢ ( ( - 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 · ( - 𝐵 / 𝐵 ) ) ) | |
| 7 | 2 3 4 5 6 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = ( 𝐴 · ( - 𝐵 / 𝐵 ) ) ) |
| 8 | divneg | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = ( - 𝐵 / 𝐵 ) ) | |
| 9 | 4 8 | syld3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = ( - 𝐵 / 𝐵 ) ) |
| 10 | divid | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 / 𝐵 ) = 1 ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 / 𝐵 ) = 1 ) |
| 12 | 11 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐵 / 𝐵 ) = - 1 ) |
| 13 | 9 12 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 / 𝐵 ) = - 1 ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( - 𝐵 / 𝐵 ) ) = ( 𝐴 · - 1 ) ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | 15 | negcli | ⊢ - 1 ∈ ℂ |
| 17 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ) → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) | |
| 18 | 16 17 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
| 19 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
| 20 | 18 19 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · - 1 ) = - 𝐴 ) |
| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · - 1 ) = - 𝐴 ) |
| 22 | 14 21 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( - 𝐵 / 𝐵 ) ) = - 𝐴 ) |
| 23 | 7 22 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) |
| 24 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐴 ∈ ℂ ) |
| 26 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 27 | negeq0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 = 0 ↔ - 𝐵 = 0 ) ) | |
| 28 | 27 | necon3bid | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ≠ 0 ↔ - 𝐵 ≠ 0 ) ) |
| 29 | 28 | biimpa | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ≠ 0 ) |
| 30 | 29 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - 𝐵 ≠ 0 ) |
| 31 | divmul | ⊢ ( ( - 𝐴 ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( - 𝐵 ∈ ℂ ∧ - 𝐵 ≠ 0 ) ) → ( ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) ) | |
| 32 | 25 26 2 30 31 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ↔ ( - 𝐵 · ( 𝐴 / 𝐵 ) ) = - 𝐴 ) ) |
| 33 | 23 32 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / - 𝐵 ) = ( 𝐴 / 𝐵 ) ) |