This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0to3un2pr | ⊢ ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 | ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 | ⊢ ( 1 ∈ ( 0 ... 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3 ) ) | |
| 5 | 1 2 3 4 | mpbir3an | ⊢ 1 ∈ ( 0 ... 3 ) |
| 6 | fzsplit | ⊢ ( 1 ∈ ( 0 ... 3 ) → ( 0 ... 3 ) = ( ( 0 ... 1 ) ∪ ( ( 1 + 1 ) ... 3 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 0 ... 3 ) = ( ( 0 ... 1 ) ∪ ( ( 1 + 1 ) ... 3 ) ) |
| 8 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 9 | 8 | oveq2i | ⊢ ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
| 10 | 0z | ⊢ 0 ∈ ℤ | |
| 11 | fzpr | ⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
| 13 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 14 | 13 | preq2i | ⊢ { 0 , ( 0 + 1 ) } = { 0 , 1 } |
| 15 | 9 12 14 | 3eqtri | ⊢ ( 0 ... 1 ) = { 0 , 1 } |
| 16 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 17 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 18 | 16 17 | oveq12i | ⊢ ( ( 1 + 1 ) ... 3 ) = ( 2 ... ( 2 + 1 ) ) |
| 19 | 2z | ⊢ 2 ∈ ℤ | |
| 20 | fzpr | ⊢ ( 2 ∈ ℤ → ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } ) | |
| 21 | 19 20 | ax-mp | ⊢ ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } |
| 22 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 23 | 22 | preq2i | ⊢ { 2 , ( 2 + 1 ) } = { 2 , 3 } |
| 24 | 18 21 23 | 3eqtri | ⊢ ( ( 1 + 1 ) ... 3 ) = { 2 , 3 } |
| 25 | 15 24 | uneq12i | ⊢ ( ( 0 ... 1 ) ∪ ( ( 1 + 1 ) ... 3 ) ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| 26 | 7 25 | eqtri | ⊢ ( 0 ... 3 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |