This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand out the universal quantifier in isibl2 . (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcnlem.r | ⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| itgcnlem.s | ⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem.t | ⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem.u | ⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) | ||
| itgcnlem.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | ||
| Assertion | iblcnlem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnlem.r | ⊢ 𝑅 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 2 | itgcnlem.s | ⊢ 𝑆 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 3 | itgcnlem.t | ⊢ 𝑇 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 4 | itgcnlem.u | ⊢ 𝑈 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 5 | itgcnlem.v | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 6 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ) |
| 8 | simp1 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ) |
| 10 | eqid | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) | |
| 11 | eqid | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) | |
| 12 | eqid | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) | |
| 13 | eqid | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) | |
| 14 | 0cn | ⊢ 0 ∈ ℂ | |
| 15 | 14 | elimel | ⊢ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ ) |
| 17 | 10 11 12 13 16 | iblcnlem1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ) ) ) |
| 19 | eqid | ⊢ 𝐴 = 𝐴 | |
| 20 | mbff | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) | |
| 21 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 22 | 21 5 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 23 | 22 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) ) |
| 24 | 23 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⟶ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 25 | 20 24 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 26 | 21 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 27 | 25 26 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 28 | iftrue | ⊢ ( 𝐵 ∈ ℂ → if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) | |
| 29 | 28 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑥 ∈ 𝐴 if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) |
| 30 | 27 29 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ 𝐴 if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) |
| 31 | mpteq12 | ⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 32 | 19 30 31 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 33 | 32 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ 𝐿1 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) ) |
| 34 | 32 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ MblFn ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) ) |
| 35 | eqid | ⊢ ℝ = ℝ | |
| 36 | 28 | imim2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → ( 𝑥 ∈ 𝐴 → if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) ) |
| 37 | 36 | imp | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) = 𝐵 ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = ( ℜ ‘ 𝐵 ) ) |
| 39 | 38 | ibllem | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 40 | 39 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ℝ → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 41 | 40 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 42 | 27 41 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 43 | mpteq12 | ⊢ ( ( ℝ = ℝ ∧ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 44 | 35 42 43 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝐵 ) ) , ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) |
| 46 | 45 1 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = 𝑅 ) |
| 47 | 46 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑅 ∈ ℝ ) ) |
| 48 | 38 | negeqd | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = - ( ℜ ‘ 𝐵 ) ) |
| 49 | 48 | ibllem | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 50 | 49 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ℝ → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 51 | 50 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 52 | 27 51 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) |
| 53 | mpteq12 | ⊢ ( ( ℝ = ℝ ∧ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) | |
| 54 | 35 52 53 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) |
| 55 | 54 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ 𝐵 ) ) , - ( ℜ ‘ 𝐵 ) , 0 ) ) ) ) |
| 56 | 55 2 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = 𝑆 ) |
| 57 | 56 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑆 ∈ ℝ ) ) |
| 58 | 47 57 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ) ) |
| 59 | 37 | fveq2d | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = ( ℑ ‘ 𝐵 ) ) |
| 60 | 59 | ibllem | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 61 | 60 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ℝ → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 62 | 61 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 63 | 27 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 64 | mpteq12 | ⊢ ( ( ℝ = ℝ ∧ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 65 | 35 63 64 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ 𝐵 ) ) , ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) |
| 67 | 66 3 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = 𝑇 ) |
| 68 | 67 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑇 ∈ ℝ ) ) |
| 69 | 59 | negeqd | ⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) = - ( ℑ ‘ 𝐵 ) ) |
| 70 | 69 | ibllem | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 71 | 70 | a1d | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝐵 ∈ ℂ ) → ( 𝑥 ∈ ℝ → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 72 | 71 | ralimi2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℂ → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 73 | 27 72 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) |
| 74 | mpteq12 | ⊢ ( ( ℝ = ℝ ∧ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) | |
| 75 | 35 73 74 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) |
| 76 | 75 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ 𝐵 ) ) , - ( ℑ ‘ 𝐵 ) , 0 ) ) ) ) |
| 77 | 76 4 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) = 𝑈 ) |
| 78 | 77 | eleq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ↔ 𝑈 ∈ ℝ ) ) |
| 79 | 68 78 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ↔ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) |
| 80 | 34 58 79 | 3anbi123d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( ( 𝑥 ∈ 𝐴 ↦ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ∈ MblFn ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℜ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ∧ ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) ) , - ( ℑ ‘ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ) , 0 ) ) ) ∈ ℝ ) ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 81 | 18 33 80 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |
| 82 | 81 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) ) |
| 83 | 7 9 82 | pm5.21ndd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ( 𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ) ∧ ( 𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ ) ) ) ) |