This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
| Assertion | i1fmullem | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
| 2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
| 3 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 5 | 4 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 6 | i1ff | ⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ℝ ) |
| 8 | 7 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 11 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 12 | 5 8 10 10 11 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) Fn ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ∘f · 𝐺 ) Fn ℝ ) |
| 14 | fniniseg | ⊢ ( ( 𝐹 ∘f · 𝐺 ) Fn ℝ → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ) ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → 𝐹 Fn ℝ ) |
| 17 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → 𝐺 Fn ℝ ) |
| 18 | 9 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ℝ ∈ V ) |
| 19 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 20 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 21 | 16 17 18 18 11 19 20 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ↔ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
| 23 | 22 | pm5.32da | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ∘f · 𝐺 ) ‘ 𝑧 ) = 𝐴 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
| 24 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐺 Fn ℝ ) |
| 25 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ℝ ) | |
| 26 | fnfvelrn | ⊢ ( ( 𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
| 28 | eldifsni | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ≠ 0 ) | |
| 29 | 28 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 30 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) | |
| 31 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 32 | 31 25 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 34 | 33 | mul01d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · 0 ) = 0 ) |
| 35 | 29 30 34 | 3netr4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ≠ ( ( 𝐹 ‘ 𝑧 ) · 0 ) ) |
| 36 | oveq2 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 0 → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) · 0 ) ) | |
| 37 | 36 | necon3i | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) ≠ ( ( 𝐹 ‘ 𝑧 ) · 0 ) → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) |
| 38 | 35 37 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) |
| 39 | eldifsn | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ∧ ( 𝐺 ‘ 𝑧 ) ≠ 0 ) ) | |
| 40 | 27 38 39 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ) |
| 41 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 42 | 41 25 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 44 | 33 43 38 | divcan4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) / ( 𝐺 ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 45 | 30 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) / ( 𝐺 ‘ 𝑧 ) ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) |
| 46 | 44 45 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) |
| 47 | 31 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝐹 Fn ℝ ) |
| 48 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 50 | 25 46 49 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 51 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 52 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 53 | 24 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 54 | 25 51 53 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 55 | 50 54 | elind | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 56 | oveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝐴 / 𝑦 ) = ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) ) | |
| 57 | 56 | sneqd | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { ( 𝐴 / 𝑦 ) } = { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) |
| 58 | 57 | imaeq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) = ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ) |
| 59 | sneq | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐺 ‘ 𝑧 ) } ) | |
| 60 | 59 | imaeq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) |
| 61 | 58 60 | ineq12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) = ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) |
| 62 | 61 | eleq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) ) |
| 63 | 62 | rspcev | ⊢ ( ( ( 𝐺 ‘ 𝑧 ) ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / ( 𝐺 ‘ 𝑧 ) ) } ) ∩ ( ◡ 𝐺 “ { ( 𝐺 ‘ 𝑧 ) } ) ) ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 64 | 40 55 63 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |
| 65 | 64 | ex | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) → ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 66 | fniniseg | ⊢ ( 𝐹 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ) ) | |
| 67 | 16 66 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ) ) |
| 68 | fniniseg | ⊢ ( 𝐺 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 69 | 17 68 | syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) |
| 70 | 67 69 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 71 | elin | ⊢ ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∧ 𝑧 ∈ ( ◡ 𝐺 “ { 𝑦 } ) ) ) | |
| 72 | anandi | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) | |
| 73 | 70 71 72 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) ) ) |
| 75 | eldifi | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → 𝐴 ∈ ℂ ) | |
| 76 | 75 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
| 77 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝐺 : ℝ ⟶ ℝ ) |
| 78 | 77 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ran 𝐺 ⊆ ℝ ) |
| 79 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) | |
| 80 | eldifsn | ⊢ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0 ) ) | |
| 81 | 79 80 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( 𝑦 ∈ ran 𝐺 ∧ 𝑦 ≠ 0 ) ) |
| 82 | 81 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ran 𝐺 ) |
| 83 | 78 82 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ℝ ) |
| 84 | 83 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ∈ ℂ ) |
| 85 | 81 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → 𝑦 ≠ 0 ) |
| 86 | 76 84 85 | divcan1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐴 / 𝑦 ) · 𝑦 ) = 𝐴 ) |
| 87 | oveq12 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( 𝐴 / 𝑦 ) · 𝑦 ) ) | |
| 88 | 87 | eqeq1d | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ↔ ( ( 𝐴 / 𝑦 ) · 𝑦 ) = 𝐴 ) ) |
| 89 | 86 88 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ∧ 𝑧 ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
| 90 | 89 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) |
| 91 | 90 | imdistanda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐴 / 𝑦 ) ∧ ( 𝐺 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
| 92 | 74 91 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
| 93 | 92 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ) ) |
| 94 | 65 93 | impbid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑧 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑧 ) · ( 𝐺 ‘ 𝑧 ) ) = 𝐴 ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 95 | 15 23 94 | 3bitrd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 96 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) 𝑧 ∈ ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) | |
| 97 | 95 96 | bitr4di | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑧 ∈ ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) ↔ 𝑧 ∈ ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) ) |
| 98 | 97 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ◡ ( 𝐹 ∘f · 𝐺 ) “ { 𝐴 } ) = ∪ 𝑦 ∈ ( ran 𝐺 ∖ { 0 } ) ( ( ◡ 𝐹 “ { ( 𝐴 / 𝑦 ) } ) ∩ ( ◡ 𝐺 “ { 𝑦 } ) ) ) |