This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| hhsscms.3 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | hhsscms | ⊢ 𝐷 ∈ ( CMet ‘ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | hhsscms.3 | ⊢ 𝐻 ∈ Cℋ | |
| 4 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 5 | 3 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 6 | 1 2 5 | hhssmet | ⊢ 𝐷 ∈ ( Met ‘ 𝐻 ) |
| 7 | simpl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) | |
| 8 | 1 2 5 | hhssims2 | ⊢ 𝐷 = ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) |
| 9 | 8 | fveq2i | ⊢ ( Cau ‘ 𝐷 ) = ( Cau ‘ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) ) |
| 10 | 7 9 | eleqtrdi | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ ( Cau ‘ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) ) ) |
| 11 | eqid | ⊢ ( normℎ ∘ −ℎ ) = ( normℎ ∘ −ℎ ) | |
| 12 | 11 | hilxmet | ⊢ ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) |
| 13 | simpr | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 : ℕ ⟶ 𝐻 ) | |
| 14 | causs | ⊢ ( ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → ( 𝑓 ∈ ( Cau ‘ ( normℎ ∘ −ℎ ) ) ↔ 𝑓 ∈ ( Cau ‘ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) ) ) ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → ( 𝑓 ∈ ( Cau ‘ ( normℎ ∘ −ℎ ) ) ↔ 𝑓 ∈ ( Cau ‘ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) ) ) ) |
| 16 | 10 15 | mpbird | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ ( Cau ‘ ( normℎ ∘ −ℎ ) ) ) |
| 17 | 3 | chssii | ⊢ 𝐻 ⊆ ℋ |
| 18 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝐻 ⊆ ℋ ) → 𝑓 : ℕ ⟶ ℋ ) | |
| 19 | 13 17 18 | sylancl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 : ℕ ⟶ ℋ ) |
| 20 | ax-hilex | ⊢ ℋ ∈ V | |
| 21 | nnex | ⊢ ℕ ∈ V | |
| 22 | 20 21 | elmap | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 23 | 19 22 | sylibr | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ ( ℋ ↑m ℕ ) ) |
| 24 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 25 | 24 11 | hhims | ⊢ ( normℎ ∘ −ℎ ) = ( IndMet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 26 | 24 25 | hhcau | ⊢ Cauchy = ( ( Cau ‘ ( normℎ ∘ −ℎ ) ) ∩ ( ℋ ↑m ℕ ) ) |
| 27 | 26 | elin2 | ⊢ ( 𝑓 ∈ Cauchy ↔ ( 𝑓 ∈ ( Cau ‘ ( normℎ ∘ −ℎ ) ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ) |
| 28 | 16 23 27 | sylanbrc | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ Cauchy ) |
| 29 | ax-hcompl | ⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) | |
| 30 | vex | ⊢ 𝑓 ∈ V | |
| 31 | vex | ⊢ 𝑥 ∈ V | |
| 32 | 30 31 | breldm | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 33 | 32 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ⇝𝑣 ) |
| 34 | 28 29 33 | 3syl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ dom ⇝𝑣 ) |
| 35 | hlimf | ⊢ ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ | |
| 36 | ffun | ⊢ ( ⇝𝑣 : dom ⇝𝑣 ⟶ ℋ → Fun ⇝𝑣 ) | |
| 37 | funfvbrb | ⊢ ( Fun ⇝𝑣 → ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) ) | |
| 38 | 35 36 37 | mp2b | ⊢ ( 𝑓 ∈ dom ⇝𝑣 ↔ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
| 39 | 34 38 | sylib | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) |
| 40 | eqid | ⊢ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) = ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) | |
| 41 | 24 25 40 | hhlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 42 | resss | ⊢ ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) | |
| 43 | 41 42 | eqsstri | ⊢ ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) |
| 44 | 43 | ssbri | ⊢ ( 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ⇝𝑣 ‘ 𝑓 ) ) |
| 45 | 39 44 | syl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ⇝𝑣 ‘ 𝑓 ) ) |
| 46 | 8 40 4 | metrest | ⊢ ( ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) ∧ 𝐻 ⊆ ℋ ) → ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ↾t 𝐻 ) = ( MetOpen ‘ 𝐷 ) ) |
| 47 | 12 17 46 | mp2an | ⊢ ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ↾t 𝐻 ) = ( MetOpen ‘ 𝐷 ) |
| 48 | 47 | eqcomi | ⊢ ( MetOpen ‘ 𝐷 ) = ( ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ↾t 𝐻 ) |
| 49 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 50 | 3 | a1i | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝐻 ∈ Cℋ ) |
| 51 | 40 | mopntop | ⊢ ( ( normℎ ∘ −ℎ ) ∈ ( ∞Met ‘ ℋ ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ Top ) |
| 52 | 12 51 | mp1i | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ∈ Top ) |
| 53 | fvex | ⊢ ( ⇝𝑣 ‘ 𝑓 ) ∈ V | |
| 54 | 53 | chlimi | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 ( ⇝𝑣 ‘ 𝑓 ) ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ 𝐻 ) |
| 55 | 50 13 39 54 | syl3anc | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → ( ⇝𝑣 ‘ 𝑓 ) ∈ 𝐻 ) |
| 56 | 1zzd | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 1 ∈ ℤ ) | |
| 57 | 48 49 50 52 55 56 13 | lmss | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ ( normℎ ∘ −ℎ ) ) ) ( ⇝𝑣 ‘ 𝑓 ) ↔ 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ( ⇝𝑣 ‘ 𝑓 ) ) ) |
| 58 | 45 57 | mpbid | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ( ⇝𝑣 ‘ 𝑓 ) ) |
| 59 | 30 53 | breldm | ⊢ ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ( ⇝𝑣 ‘ 𝑓 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 60 | 58 59 | syl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝐻 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 61 | 4 6 60 | iscmet3i | ⊢ 𝐷 ∈ ( CMet ‘ 𝐻 ) |