This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007) (Revised by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3i.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| iscmet3i.3 | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) | ||
| iscmet3i.4 | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | ||
| Assertion | iscmet3i | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3i.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | iscmet3i.3 | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) | |
| 3 | iscmet3i.4 | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ 𝑋 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 6 | 2 | a1i | ⊢ ( ⊤ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 7 | 4 1 5 6 | iscmet3 | ⊢ ( ⊤ → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
| 8 | 7 | mptru | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 9 | 3 | ex | ⊢ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 10 | 8 9 | mprgbir | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) |