This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric of a closed subspace is complete. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| hhssims2.3 | |- D = ( IndMet ` W ) |
||
| hhsscms.3 | |- H e. CH |
||
| Assertion | hhsscms | |- D e. ( CMet ` H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | hhssims2.3 | |- D = ( IndMet ` W ) |
|
| 3 | hhsscms.3 | |- H e. CH |
|
| 4 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 5 | 3 | chshii | |- H e. SH |
| 6 | 1 2 5 | hhssmet | |- D e. ( Met ` H ) |
| 7 | simpl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` D ) ) |
|
| 8 | 1 2 5 | hhssims2 | |- D = ( ( normh o. -h ) |` ( H X. H ) ) |
| 9 | 8 | fveq2i | |- ( Cau ` D ) = ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) |
| 10 | 7 9 | eleqtrdi | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) |
| 11 | eqid | |- ( normh o. -h ) = ( normh o. -h ) |
|
| 12 | 11 | hilxmet | |- ( normh o. -h ) e. ( *Met ` ~H ) |
| 13 | simpr | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f : NN --> H ) |
|
| 14 | causs | |- ( ( ( normh o. -h ) e. ( *Met ` ~H ) /\ f : NN --> H ) -> ( f e. ( Cau ` ( normh o. -h ) ) <-> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) ) |
|
| 15 | 12 13 14 | sylancr | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( f e. ( Cau ` ( normh o. -h ) ) <-> f e. ( Cau ` ( ( normh o. -h ) |` ( H X. H ) ) ) ) ) |
| 16 | 10 15 | mpbird | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( Cau ` ( normh o. -h ) ) ) |
| 17 | 3 | chssii | |- H C_ ~H |
| 18 | fss | |- ( ( f : NN --> H /\ H C_ ~H ) -> f : NN --> ~H ) |
|
| 19 | 13 17 18 | sylancl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f : NN --> ~H ) |
| 20 | ax-hilex | |- ~H e. _V |
|
| 21 | nnex | |- NN e. _V |
|
| 22 | 20 21 | elmap | |- ( f e. ( ~H ^m NN ) <-> f : NN --> ~H ) |
| 23 | 19 22 | sylibr | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. ( ~H ^m NN ) ) |
| 24 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 25 | 24 11 | hhims | |- ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 26 | 24 25 | hhcau | |- Cauchy = ( ( Cau ` ( normh o. -h ) ) i^i ( ~H ^m NN ) ) |
| 27 | 26 | elin2 | |- ( f e. Cauchy <-> ( f e. ( Cau ` ( normh o. -h ) ) /\ f e. ( ~H ^m NN ) ) ) |
| 28 | 16 23 27 | sylanbrc | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. Cauchy ) |
| 29 | ax-hcompl | |- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
|
| 30 | vex | |- f e. _V |
|
| 31 | vex | |- x e. _V |
|
| 32 | 30 31 | breldm | |- ( f ~~>v x -> f e. dom ~~>v ) |
| 33 | 32 | rexlimivw | |- ( E. x e. ~H f ~~>v x -> f e. dom ~~>v ) |
| 34 | 28 29 33 | 3syl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. dom ~~>v ) |
| 35 | hlimf | |- ~~>v : dom ~~>v --> ~H |
|
| 36 | ffun | |- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
|
| 37 | funfvbrb | |- ( Fun ~~>v -> ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) ) |
|
| 38 | 35 36 37 | mp2b | |- ( f e. dom ~~>v <-> f ~~>v ( ~~>v ` f ) ) |
| 39 | 34 38 | sylib | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ~~>v ( ~~>v ` f ) ) |
| 40 | eqid | |- ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) |
|
| 41 | 24 25 40 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) |
| 42 | resss | |- ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
|
| 43 | 41 42 | eqsstri | |- ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |
| 44 | 43 | ssbri | |- ( f ~~>v ( ~~>v ` f ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) ) |
| 45 | 39 44 | syl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) ) |
| 46 | 8 40 4 | metrest | |- ( ( ( normh o. -h ) e. ( *Met ` ~H ) /\ H C_ ~H ) -> ( ( MetOpen ` ( normh o. -h ) ) |`t H ) = ( MetOpen ` D ) ) |
| 47 | 12 17 46 | mp2an | |- ( ( MetOpen ` ( normh o. -h ) ) |`t H ) = ( MetOpen ` D ) |
| 48 | 47 | eqcomi | |- ( MetOpen ` D ) = ( ( MetOpen ` ( normh o. -h ) ) |`t H ) |
| 49 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 50 | 3 | a1i | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> H e. CH ) |
| 51 | 40 | mopntop | |- ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. Top ) |
| 52 | 12 51 | mp1i | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( MetOpen ` ( normh o. -h ) ) e. Top ) |
| 53 | fvex | |- ( ~~>v ` f ) e. _V |
|
| 54 | 53 | chlimi | |- ( ( H e. CH /\ f : NN --> H /\ f ~~>v ( ~~>v ` f ) ) -> ( ~~>v ` f ) e. H ) |
| 55 | 50 13 39 54 | syl3anc | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( ~~>v ` f ) e. H ) |
| 56 | 1zzd | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> 1 e. ZZ ) |
|
| 57 | 48 49 50 52 55 56 13 | lmss | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> ( f ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( ~~>v ` f ) <-> f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) ) ) |
| 58 | 45 57 | mpbid | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) ) |
| 59 | 30 53 | breldm | |- ( f ( ~~>t ` ( MetOpen ` D ) ) ( ~~>v ` f ) -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 60 | 58 59 | syl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> H ) -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 61 | 4 6 60 | iscmet3i | |- D e. ( CMet ` H ) |