This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcn.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| hhcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| hhcn.4 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | hhcnf | ⊢ ContFn = ( 𝐽 Cn 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcn.1 | ⊢ 𝐷 = ( normℎ ∘ −ℎ ) | |
| 2 | hhcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | hhcn.4 | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | df-rab | ⊢ { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } = { 𝑡 ∣ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) } | |
| 5 | df-cnfn | ⊢ ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } | |
| 6 | 1 | hilmetdval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑥 −ℎ 𝑤 ) ) ) |
| 7 | normsub | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑤 ) ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) | |
| 8 | 6 7 | eqtrd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 9 | 8 | adantll | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( 𝑥 𝐷 𝑤 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 10 | 9 | breq1d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 𝐷 𝑤 ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 ) ) |
| 11 | ffvelcdm | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑡 ‘ 𝑥 ) ∈ ℂ ) | |
| 12 | ffvelcdm | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑤 ∈ ℋ ) → ( 𝑡 ‘ 𝑤 ) ∈ ℂ ) | |
| 13 | 11 12 | anim12dan | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑡 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℂ ) ) |
| 14 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 15 | 14 | cnmetdval | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℂ ) → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑡 ‘ 𝑥 ) − ( 𝑡 ‘ 𝑤 ) ) ) ) |
| 16 | abssub | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℂ ) → ( abs ‘ ( ( 𝑡 ‘ 𝑥 ) − ( 𝑡 ‘ 𝑤 ) ) ) = ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) ) | |
| 17 | 15 16 | eqtrd | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑡 ‘ 𝑤 ) ∈ ℂ ) → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 18 | 13 17 | syl | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ ( 𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 19 | 18 | anassrs | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) = ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | breq1d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 21 | 10 20 | imbi12d | ⊢ ( ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) ∧ 𝑤 ∈ ℋ ) → ( ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 22 | 21 | ralbidva | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 23 | 22 | rexbidv | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 24 | 23 | ralbidv | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 25 | 24 | ralbidva | ⊢ ( 𝑡 : ℋ ⟶ ℂ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 26 | 25 | pm5.32i | ⊢ ( ( 𝑡 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 27 | 1 | hilxmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℋ ) |
| 28 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 29 | 3 | cnfldtopn | ⊢ 𝐾 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 30 | 2 29 | metcn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℋ ) ∧ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) → ( 𝑡 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑡 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ) ) |
| 31 | 27 28 30 | mp2an | ⊢ ( 𝑡 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑡 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( 𝑥 𝐷 𝑤 ) < 𝑧 → ( ( 𝑡 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑡 ‘ 𝑤 ) ) < 𝑦 ) ) ) |
| 32 | cnex | ⊢ ℂ ∈ V | |
| 33 | ax-hilex | ⊢ ℋ ∈ V | |
| 34 | 32 33 | elmap | ⊢ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ↔ 𝑡 : ℋ ⟶ ℂ ) |
| 35 | 34 | anbi1i | ⊢ ( ( 𝑡 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ↔ ( 𝑡 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 36 | 26 31 35 | 3bitr4i | ⊢ ( 𝑡 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 37 | 36 | eqabi | ⊢ ( 𝐽 Cn 𝐾 ) = { 𝑡 ∣ ( 𝑡 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) ) } |
| 38 | 4 5 37 | 3eqtr4i | ⊢ ContFn = ( 𝐽 Cn 𝐾 ) |