This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv .) (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmadjrnb | ⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjrn | ⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 2 | n0ii | ⊢ ¬ ℋ = ∅ |
| 4 | eqcom | ⊢ ( ∅ = ℋ ↔ ℋ = ∅ ) | |
| 5 | 3 4 | mtbir | ⊢ ¬ ∅ = ℋ |
| 6 | dm0 | ⊢ dom ∅ = ∅ | |
| 7 | 6 | eqeq1i | ⊢ ( dom ∅ = ℋ ↔ ∅ = ℋ ) |
| 8 | 5 7 | mtbir | ⊢ ¬ dom ∅ = ℋ |
| 9 | fdm | ⊢ ( ∅ : ℋ ⟶ ℋ → dom ∅ = ℋ ) | |
| 10 | 8 9 | mto | ⊢ ¬ ∅ : ℋ ⟶ ℋ |
| 11 | dmadjop | ⊢ ( ∅ ∈ dom adjℎ → ∅ : ℋ ⟶ ℋ ) | |
| 12 | 10 11 | mto | ⊢ ¬ ∅ ∈ dom adjℎ |
| 13 | ndmfv | ⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( adjℎ ‘ 𝑇 ) = ∅ ) | |
| 14 | 13 | eleq1d | ⊢ ( ¬ 𝑇 ∈ dom adjℎ → ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ↔ ∅ ∈ dom adjℎ ) ) |
| 15 | 12 14 | mtbiri | ⊢ ( ¬ 𝑇 ∈ dom adjℎ → ¬ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |
| 16 | 15 | con4i | ⊢ ( ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ → 𝑇 ∈ dom adjℎ ) |
| 17 | 1 16 | impbii | ⊢ ( 𝑇 ∈ dom adjℎ ↔ ( adjℎ ‘ 𝑇 ) ∈ dom adjℎ ) |