This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normsub | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 −ℎ 𝐴 ) = ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) = ( normℎ ‘ ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 | fvoveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( normℎ ‘ ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ↔ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
| 9 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 10 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 11 | 9 10 | normsubi | ⊢ ( normℎ ‘ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( normℎ ‘ ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 12 | 4 8 11 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) |