This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnfn | ⊢ ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnfn | ⊢ ContFn | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | cc | ⊢ ℂ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | chba | ⊢ ℋ | |
| 5 | 2 4 3 | co | ⊢ ( ℂ ↑m ℋ ) |
| 6 | vx | ⊢ 𝑥 | |
| 7 | vy | ⊢ 𝑦 | |
| 8 | crp | ⊢ ℝ+ | |
| 9 | vz | ⊢ 𝑧 | |
| 10 | vw | ⊢ 𝑤 | |
| 11 | cno | ⊢ normℎ | |
| 12 | 10 | cv | ⊢ 𝑤 |
| 13 | cmv | ⊢ −ℎ | |
| 14 | 6 | cv | ⊢ 𝑥 |
| 15 | 12 14 13 | co | ⊢ ( 𝑤 −ℎ 𝑥 ) |
| 16 | 15 11 | cfv | ⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) |
| 17 | clt | ⊢ < | |
| 18 | 9 | cv | ⊢ 𝑧 |
| 19 | 16 18 17 | wbr | ⊢ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 |
| 20 | cabs | ⊢ abs | |
| 21 | 1 | cv | ⊢ 𝑡 |
| 22 | 12 21 | cfv | ⊢ ( 𝑡 ‘ 𝑤 ) |
| 23 | cmin | ⊢ − | |
| 24 | 14 21 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) |
| 25 | 22 24 23 | co | ⊢ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) |
| 26 | 25 20 | cfv | ⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) |
| 27 | 7 | cv | ⊢ 𝑦 |
| 28 | 26 27 17 | wbr | ⊢ ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 |
| 29 | 19 28 | wi | ⊢ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 30 | 29 10 4 | wral | ⊢ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 31 | 30 9 8 | wrex | ⊢ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 32 | 31 7 8 | wral | ⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 33 | 32 6 4 | wral | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) |
| 34 | 33 1 5 | crab | ⊢ { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |
| 35 | 0 34 | wceq | ⊢ ContFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( 𝑡 ‘ 𝑤 ) − ( 𝑡 ‘ 𝑥 ) ) ) < 𝑦 ) } |