This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcn.1 | |- D = ( normh o. -h ) |
|
| hhcn.2 | |- J = ( MetOpen ` D ) |
||
| hhcn.4 | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | hhcnf | |- ContFn = ( J Cn K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcn.1 | |- D = ( normh o. -h ) |
|
| 2 | hhcn.2 | |- J = ( MetOpen ` D ) |
|
| 3 | hhcn.4 | |- K = ( TopOpen ` CCfld ) |
|
| 4 | df-rab | |- { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } = { t | ( t e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) } |
|
| 5 | df-cnfn | |- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
|
| 6 | 1 | hilmetdval | |- ( ( x e. ~H /\ w e. ~H ) -> ( x D w ) = ( normh ` ( x -h w ) ) ) |
| 7 | normsub | |- ( ( x e. ~H /\ w e. ~H ) -> ( normh ` ( x -h w ) ) = ( normh ` ( w -h x ) ) ) |
|
| 8 | 6 7 | eqtrd | |- ( ( x e. ~H /\ w e. ~H ) -> ( x D w ) = ( normh ` ( w -h x ) ) ) |
| 9 | 8 | adantll | |- ( ( ( t : ~H --> CC /\ x e. ~H ) /\ w e. ~H ) -> ( x D w ) = ( normh ` ( w -h x ) ) ) |
| 10 | 9 | breq1d | |- ( ( ( t : ~H --> CC /\ x e. ~H ) /\ w e. ~H ) -> ( ( x D w ) < z <-> ( normh ` ( w -h x ) ) < z ) ) |
| 11 | ffvelcdm | |- ( ( t : ~H --> CC /\ x e. ~H ) -> ( t ` x ) e. CC ) |
|
| 12 | ffvelcdm | |- ( ( t : ~H --> CC /\ w e. ~H ) -> ( t ` w ) e. CC ) |
|
| 13 | 11 12 | anim12dan | |- ( ( t : ~H --> CC /\ ( x e. ~H /\ w e. ~H ) ) -> ( ( t ` x ) e. CC /\ ( t ` w ) e. CC ) ) |
| 14 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 15 | 14 | cnmetdval | |- ( ( ( t ` x ) e. CC /\ ( t ` w ) e. CC ) -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) = ( abs ` ( ( t ` x ) - ( t ` w ) ) ) ) |
| 16 | abssub | |- ( ( ( t ` x ) e. CC /\ ( t ` w ) e. CC ) -> ( abs ` ( ( t ` x ) - ( t ` w ) ) ) = ( abs ` ( ( t ` w ) - ( t ` x ) ) ) ) |
|
| 17 | 15 16 | eqtrd | |- ( ( ( t ` x ) e. CC /\ ( t ` w ) e. CC ) -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) = ( abs ` ( ( t ` w ) - ( t ` x ) ) ) ) |
| 18 | 13 17 | syl | |- ( ( t : ~H --> CC /\ ( x e. ~H /\ w e. ~H ) ) -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) = ( abs ` ( ( t ` w ) - ( t ` x ) ) ) ) |
| 19 | 18 | anassrs | |- ( ( ( t : ~H --> CC /\ x e. ~H ) /\ w e. ~H ) -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) = ( abs ` ( ( t ` w ) - ( t ` x ) ) ) ) |
| 20 | 19 | breq1d | |- ( ( ( t : ~H --> CC /\ x e. ~H ) /\ w e. ~H ) -> ( ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y <-> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) |
| 21 | 10 20 | imbi12d | |- ( ( ( t : ~H --> CC /\ x e. ~H ) /\ w e. ~H ) -> ( ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) <-> ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 22 | 21 | ralbidva | |- ( ( t : ~H --> CC /\ x e. ~H ) -> ( A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) <-> A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 23 | 22 | rexbidv | |- ( ( t : ~H --> CC /\ x e. ~H ) -> ( E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) <-> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 24 | 23 | ralbidv | |- ( ( t : ~H --> CC /\ x e. ~H ) -> ( A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) <-> A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 25 | 24 | ralbidva | |- ( t : ~H --> CC -> ( A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) <-> A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 26 | 25 | pm5.32i | |- ( ( t : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) ) <-> ( t : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 27 | 1 | hilxmet | |- D e. ( *Met ` ~H ) |
| 28 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 29 | 3 | cnfldtopn | |- K = ( MetOpen ` ( abs o. - ) ) |
| 30 | 2 29 | metcn | |- ( ( D e. ( *Met ` ~H ) /\ ( abs o. - ) e. ( *Met ` CC ) ) -> ( t e. ( J Cn K ) <-> ( t : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) ) ) ) |
| 31 | 27 28 30 | mp2an | |- ( t e. ( J Cn K ) <-> ( t : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( x D w ) < z -> ( ( t ` x ) ( abs o. - ) ( t ` w ) ) < y ) ) ) |
| 32 | cnex | |- CC e. _V |
|
| 33 | ax-hilex | |- ~H e. _V |
|
| 34 | 32 33 | elmap | |- ( t e. ( CC ^m ~H ) <-> t : ~H --> CC ) |
| 35 | 34 | anbi1i | |- ( ( t e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) <-> ( t : ~H --> CC /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 36 | 26 31 35 | 3bitr4i | |- ( t e. ( J Cn K ) <-> ( t e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) ) |
| 37 | 36 | eqabi | |- ( J Cn K ) = { t | ( t e. ( CC ^m ~H ) /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) ) } |
| 38 | 4 5 37 | 3eqtr4i | |- ContFn = ( J Cn K ) |