This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for h1de2ci . (Contributed by NM, 19-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| h1de2.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | h1de2ctlem | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | h1de2.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 | elexi | ⊢ 𝐴 ∈ V |
| 4 | 3 | elsn | ⊢ ( 𝐴 ∈ { 0ℎ } ↔ 𝐴 = 0ℎ ) |
| 5 | hsn0elch | ⊢ { 0ℎ } ∈ Cℋ | |
| 6 | 5 | ococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) = { 0ℎ } |
| 7 | 6 | eleq2i | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ↔ 𝐴 ∈ { 0ℎ } ) |
| 8 | ax-hvmul0 | ⊢ ( 𝐵 ∈ ℋ → ( 0 ·ℎ 𝐵 ) = 0ℎ ) | |
| 9 | 2 8 | ax-mp | ⊢ ( 0 ·ℎ 𝐵 ) = 0ℎ |
| 10 | 9 | eqeq2i | ⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 = 0ℎ ) |
| 11 | 4 7 10 | 3bitr4ri | ⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) |
| 12 | sneq | ⊢ ( 𝐵 = 0ℎ → { 𝐵 } = { 0ℎ } ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝐵 = 0ℎ → ( ⊥ ‘ { 𝐵 } ) = ( ⊥ ‘ { 0ℎ } ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐵 = 0ℎ → ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝐵 = 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 0ℎ } ) ) ) ) |
| 16 | 11 15 | bitr4id | ⊢ ( 𝐵 = 0ℎ → ( 𝐴 = ( 0 ·ℎ 𝐵 ) ↔ 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 17 | 0cn | ⊢ 0 ∈ ℂ | |
| 18 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ·ℎ 𝐵 ) = ( 0 ·ℎ 𝐵 ) ) | |
| 19 | 18 | rspceeqv | ⊢ ( ( 0 ∈ ℂ ∧ 𝐴 = ( 0 ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 20 | 17 19 | mpan | ⊢ ( 𝐴 = ( 0 ·ℎ 𝐵 ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 21 | 16 20 | biimtrrdi | ⊢ ( 𝐵 = 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 22 | 1 2 | h1de2bi | ⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) ) |
| 23 | his6 | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) | |
| 24 | 2 23 | ax-mp | ⊢ ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) |
| 25 | 24 | necon3bii | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) |
| 26 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 27 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 28 | 26 27 | divclzi | ⊢ ( ( 𝐵 ·ih 𝐵 ) ≠ 0 → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 29 | 25 28 | sylbir | ⊢ ( 𝐵 ≠ 0ℎ → ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ) |
| 30 | oveq1 | ⊢ ( 𝑥 = ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) → ( 𝑥 ·ℎ 𝐵 ) = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) | |
| 31 | 30 | rspceeqv | ⊢ ( ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ ∧ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 32 | 29 31 | sylan | ⊢ ( ( 𝐵 ≠ 0ℎ ∧ 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 33 | 32 | ex | ⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 = ( ( ( 𝐴 ·ih 𝐵 ) / ( 𝐵 ·ih 𝐵 ) ) ·ℎ 𝐵 ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 34 | 22 33 | sylbid | ⊢ ( 𝐵 ≠ 0ℎ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 35 | 21 34 | pm2.61ine | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) → ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |
| 36 | snssi | ⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) | |
| 37 | occl | ⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) | |
| 38 | 2 36 37 | mp2b | ⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 39 | 38 | choccli | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Cℋ |
| 40 | 39 | chshii | ⊢ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ |
| 41 | h1did | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
| 42 | 2 41 | ax-mp | ⊢ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) |
| 43 | shmulcl | ⊢ ( ( ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) → ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) | |
| 44 | 40 42 43 | mp3an13 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 45 | eleq1 | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝑥 ·ℎ 𝐵 ) ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) | |
| 46 | 44 45 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℂ → ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) ) |
| 47 | 46 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ) |
| 48 | 35 47 | impbii | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) |